The monitoring and early warning of geological disasters based on wireless sensor networks (WSN) is an important development trend. The traditional WSN forecasts the disasters through analyzing various monitoring data with a prediction model. The method has disadvantages, such as large amount of data, the ambiguity relationship between the parameters and the lack of effective disaster prediction model. The visual image information can be introduced into the geological disasters monitoring and early warning, which will effectively improve the timing and accuracy. On the basis of previous work, the project emphasizes on the application of the wireless video sensor networks in geological disasters monitoring. The key problem is to build the mechanism of the sensor nodes collaborative perception and the method of disaster visual analysis which adequately give consideration to the accuracy of early warning and the network energy consumption. We construct an efficiency function by combining the information utility with the energy consumption of sensor nodes, and apply genetic algorithms to determine the sensor nodes which participate in the cooperative sensing. The selected nodes collaboratively acquire the dynamic monitoring data and the scene image information, and accomplish the tracking and localization of personnel and vehicles in monitoring area. The monitoring center implements the 3D scene reconstruction according to the spatial correlation of the multiview scene image and provides the real-time dynamic disaster information for the command and decision-making. Research results of the project will improve the visualization of geological disasters monitoring and provide better information technology support for disaster prevention and mitigation.
基于传感器网络技术开展地质灾害监测预警是当前的重要发展方向。传统无线传感网络主要通过灾害预测模型分析传感器节点实时采集的多种监测数据,来确定灾害发生的可能性,存在监测数据量大、各参量相互关系不明确以及缺少公认有效的预测模型等问题。通过将视觉图像信息引入到地质灾害监测中来,能有效提高预警的适时性与准确性。本项目在已有工作的基础上,研究无线视频传感器网络在地质灾害监测中的应用,重点研究能有效兼顾灾害预警准确性和网络能耗的传感器节点协同感知与灾情视觉分析方法。结合传感器节点信息收益与网络能耗构建效能函数,采用遗传算法选定参与协同感知的传感器节点。通过选定节点协同获取场景动态监测数据与图像信息,完成监控区域内人员、车辆等目标的跟踪定位,根据多视角场景图像的空间相关性实现三维场景重建,为指挥决策提供实时的动态灾情信息。项目研究成果将提高地质灾害监测的可视化程度,为防灾减灾提供更好的信息技术支撑。
开展面向地质灾害监测预警的无线视频传感器网络协同感知与视觉分析研究突破了现有无线传感器网络大都通过简单的监测数据来实现地质灾害预警的局限。本项目通过构建双层异构无线传感器网络,底层地质监测传感器节点检测到参数异常时触发上层视频传感器节点工作,实现监测区域内的人员、车辆等目标的跟踪定位以及场景图像的压缩传输与重建。节点协同感知与智能视觉分析主要涉及异常信号监测、运动目标检测、传感器节点优化选择、图像压缩传输、多视角场景重构。由于传感器节点资源与能量有限,算法设计侧重于兼顾节点能耗与监测性能。本项目研究能有效提升灾害监测的可视化程度、提高预警的适时性与准确性,相关研究成果也可推广应用到河堤、矿山安全监测,河道漂浮物检测以及其他环境监测领域。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
路基土水分传感器室内标定方法与影响因素分析
涡度相关技术及其在陆地生态系统通量研究中的应用
跨社交网络用户对齐技术综述
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
肝星状细胞NLRP3/caspase-1信号通路持续活化在慢性和传播阻断后血吸虫病致病中的作用机制
面向山区公路地质灾害监测的三维无线传感器网络层次化数据融合模型研究
面向无线多媒体传感器网络的高效压缩视频感知
面向无线视觉传感器网络的视频编码“在路径计算”方法研究
面向无线多媒体传感器网络的能量受限高效视频感知编码研究