The future power grid is a smart grid. Chips will be everywhere in the grid. The smart grid is a flexible grid. With the widespread use of power electronic equipment, switching operations are frequent, which generate a strong electromagnetic transient interference and become the main EMI source. With the development of UHV, high-capacity, and integrated power system, electromagnetic interference becomes stronger and stronger. However, the electromagnetic interference protection capability of chip is weak. What is more, a large number of smart chip sensors work in a harsh working environment where strong electric fields and high temperatures coexist. The performance of the sensor is greatly affected by electric field and temperature. The development and reliable operation of smart devices are facing enormous challenges. The aim of the project is to propose a system-equipment-chip synergistic protection technology for EMI, and comprehensively improve the EMI protection capability of smart devices. This project combines the field test and the simulation analysis to focus on the electromagnetic disturbance characteristic at the ports of intelligent power equipment in the high-voltage field under the impulse transient conditions such as AIS and GIS switch operation, lightning strike on frame lightning rod. The mechanism and superposition effect of multi-path electromagnetic interference under transient conditions in large substation and converter station will be analyzed. The characteristic and mechanism of electromagnetic interference at the ports of intelligent equipment will be obtained. The mechanism of dynamic chain failure between intelligent devices and the failure mechanism of smart micro-integrated circuit sensors under transient electromagnetic disturbance in substation and converter station will be studied. Finally, a differentiated cooperative protection technology to protect the smart device from the transient electromagnetic interference will be put forward. The research will not only provide powerful technical support for the rapid development of power grid in the direction of intelligence and integration, but also greatly enhances the research level of the theory of transient electromagnetic interference protection in complex environment. It has great engineering application value and important theoretical research significance.
未来电网是一个智慧的电网。智能芯片将遍布于电力设备内外各处,形成智慧电网的大脑和神经网络。智慧电网是灵活的电网。SDATCOM、滤波器组、无功补偿等装置投切频繁,开关操作时有发生,这些暂态变化产生强烈电磁骚扰,成为未来电网的主要电磁骚扰源。智慧电网电磁环境更加严峻,而智能芯片电磁干扰防护能力较弱。监测设备状态的智能芯片传感器大量工作于强电场和高温并存的恶劣工作环境,其性能受电场和温度影响巨大,智能设备的研发和可靠运行均面临巨大挑战。针对以上问题,课题目标是提出暂态冲击电磁骚扰的系统-设备-芯片分层分级协同防护技术,全面提高智能设备的电磁干扰防护能力。为此,课题将现场试验和仿真分析相结合,集中开展开关操作冲击暂态下高压场区智能电力设备端口的电磁骚扰特征研究,分析大型变电站/换流站冲击暂态下多路径电磁骚扰相互作用机理和叠加效应;研究多路径暂态冲击下设备部件间电磁振荡特征,研究装置失效、保护装置动作中的电磁暂态动态叠加特性;研究多路径暂态骚扰下智能芯片引线毁伤机理以及,强电、高热环境下智能芯片失效机理。通过以上研究,获得智能电力设备端口电磁骚扰的特征和产生机理,获得多路径暂态骚扰下设备部件大面积失效的机理,提出电力环境下芯片的电磁干扰防护技术,综合各级抑制措施特点,提出综合系统、设备、芯片的电磁干扰分层分级协同防护技术,实现电磁干扰的有效防护。研究不仅为电网向智能化、集成化的方向迅速发展提供有力的技术支撑,还将大大提升强电、高热复杂环境下暂态电磁干扰防护理论的研究水平,具有重要理论意义和工程应用价值。
未来电网是一个智慧的电网。智能芯片将遍布于电力设备内外各处,形成智慧电网的大脑和神经网络。智慧电网是灵活的电网。SDATCOM、滤波器组、无功补偿等装置投切频繁,开关操作时有发生,这些暂态变化产生强烈电磁骚扰,成为未来电网的主要电磁骚扰源。智慧电网电磁环境更加严峻,而智能芯片电磁干扰防护能力较弱。监测设备状态的智能芯片传感器大量工作于强电场和高温并存的恶劣工作环境,其性能受电场和温度影响巨大,智能设备的研发和可靠运行均面临巨大挑战。针对冲击暂态下智能电力设备失效机理及电磁干扰防护问题,课题采用理论建模、仿真计算、模拟测试和现场试验等方法相互结合开展研究,从干扰源特征,关键干扰路径、智能设备外部的相互影响和智能设备内部关键器件集成电路的失效机理等方面逐步深入,研究暂态冲击电磁骚扰的护技术。通过以上研究,课题获得了超特高压变电站/换流站GIS 开关操作及雷击时智能设备周围空间瞬态电磁干扰和设备端口传导电磁骚扰的波形特征;建立了暂态冲击对二次系统的多路径综合电磁耦合数值仿真方法,获得了大型变电站/换流站暂态冲击下的关键电磁耦合路径;获得了集成电路对冲击暂态多路径电磁干扰的敏感位置,揭示了冲击暂态电磁骚扰下微型智能集成电路传感器的失效机理;提出了综合系统、设备、芯片的电磁干扰分层分级协同防护技术,实现了电磁干扰的有效防护;提出了将回流点布置于同一接地网的变电站/换流站接地系统暂态特性测试方法,实现了在运变电站的现场带电测量评估。基于仿真分析方法开发的软件已实现成果转化,测试方法已经在现场应用,开发的部分智能装置已经挂网运行。研究不仅为电网向智能化、集成化的方向迅速发展提供了基础理论和关键技术支撑,还将大大提升强电、高热复杂环境下暂态电磁干扰防护理论的研究水平,具有重要理论意义和工程应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
一二次融合电信号智能量测设备在暂态强电磁干扰下的失效机理及主动防护技术
冲击荷载作用下典型聚脲涂覆防护结构的动态响应与失效机理
线缆瞬态电磁干扰防护
高温热冲击下陶瓷材料的动态裂纹扩展与失效机理