Over the past few decades, excessive use of fossil fuels has resulted in significant emission of CO2 waste gas and severe environmental pollution. Therefore, to explore how to construct a highly effective, stable and reliable nanocatalytic system to convert small carbonous molecules CO2 to high-value chemicals, can achieve efficient carbon-based energy conversion and recycling, which has become a cross-disciplinary frontier in the research fields of catalysis, energy and environmential science, thus has great scientific significance and research value. This project will explore the pathways for realizing effective plasma resonance enhanced thermocatalytic hydrogenation of CO2. The design of highly active and selective rhodium-based nanocrystalline catalyst system will be investigated, and the compositions, morphology, interfaces and catalyst supports will be precisely controlled. The enhancement effect of localized surface plasmon resonance will be used to promote the dissociative adsorption and catalytic activation of C=O bonds. Moreover, in-situ temperature-dependent surface-enhanced Raman spectroscopy and Uv-Vis diffuse reflectance spectroscopy will be used to reveal the change processes of key intermediates. By combining the theoretical simulations and experimental results, the structure-performance relationship between the catalyst atomic structures and the catalytic activity will be determined. Through the implement of this project, new catalytic pathway with low power consumption for converting green-house gas CO2 into high-value fuels and chemicals will be developed, and innovative breakthroughs in novel external-light-field-induced surface plasmon resonance enhanced thermaocatalytic systems will be achieved.
近几十年来,化石能源的过度使用造成了CO2废气的大量排放和严重的环境污染。为此,研究如何构筑高效、稳定、可靠的纳米催化体系把碳基小分子CO2还原为高值化学品,能够促进碳基能源高效转换和循环利用,已成为催化、能源和环境领域的前沿交叉问题,具有重要的科学意义和研究价值。本项目致力于探索实现表面等离子体激元辅助光热协同催化CO2加氢反应的有效途径,通过设计具有高活性和高选择性的新型金属纳米晶催化剂,系统调控和优化催化剂的成分、形貌、界面及载体等参数,利用局域表面等离激元增强效应促进C=O键的解离吸附和催化活化,通过原位变温表面增强拉曼光谱和原位漫反射光谱表征揭示关键反应中间体的转化过程,结合理论模拟和实验证据建立催化剂原子结构与性能的构效关系。通过开展本项目,能够发展在低能耗下将CO2还原成高值有机燃料和化学品的新催化途径,推动光外场诱导表面等离激元辅助光热协同催化研究取得创新突破。
近几十年来,化石能源的过度使用导致大量CO2废气排放和严重环境污染。因此,研究建立高效、稳定、可靠的纳米催化体系,将碳基小分子CO2转化为高附加值的化学品以促进碳基能源的高效转化和循环利用,已经成为催化、能源和环境领域的前沿交叉课题,具有重要的科学意义和研究价值。.在本项目执行期内,研究团队通过构建新型铑基金属纳米晶催化剂和银原子团簇纳米催化剂,实现了多种表面等离子体共振辅助光热协同催化CO2加氢反应的有效途径;设计了多种具有高效电催化CO2还原性能的金属纳米催化剂,并对电催化反应进行了深入的实验和理论探究,揭示了反应的关键机理;进行了CO2高效电催化转换装置的工业放大与应用探索,促进CO2加氢技术的发展和朝实用化迈进;此外,团队还研究了金属-有机框架催化剂构建策略在高效电催化CO2还原中的应用以及该策略在人工固氮中的拓展应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
铑及铑基合金纳米晶高表面能晶面结构调控及催化性能的研究
表面等离子体共振效应驱动的高选择性光电催化及其机理研究
用于取代硝基化合物选择性加氢反应的纳米催化剂研制
用于二氧化碳加氢反应的高活性有机金属多相催化剂研究