Wind turbine blades is very long, and cabin quality is very large, which structure is vulnerable to vibration。 Wind turbine subsystem vibration eventually lead to damage to the bearings, blades and tower components, which reduces the reliability of the machinemechanism. So the research of the propagation of nonlinear vibration of the wind turbine machine has become very urgent.The current project will integrate the newly development of dynamics, computing and testing technology to deal with the dynamic modeling under the complex forces and develop the whole model with multi-factor coupling such as wind pressure, stress field, vibration field, the electromagnetic excitement and etc. Based on the FEA of structures. With the combination of the vibration testing technique and the sensor technology of flow rate and wind pressure, the field parameter and vibration response of wind turbine transmission system can be test in-circuit and the whole model can also be test and check. In a further study, a simulation and testing under typical working condition will be done based on the previous work and the vibration transmission of the blade-gear-rotor system will be study. In the current project, a new progress will be made in the modeling of the blade-gear-rotor system and we will acquire the theory and technique of vibration transmission as well as the character of vibration transmission under typical working conditions. The research achievement can be applied to the specific design and fault diagnosis of this kind of devices.
风电机组叶片长、机舱质量大,这种结构极易振动,风电机组各子系统的振动不可分地耦合在一起,并最终导致轴承、叶片和塔架等部件的损坏,从而降低整机的可靠性,因此风电机组整机非线性振动机理与传播规律的研究变得十分迫切。本项目结合国内外动力学、仿真与测试技术的最新进展,突破复杂载荷作用下的动力学建模问题,以结构有限元为基础,建立随机风压载荷、应力场、振动场等多因素耦合状态下的风电机组整机模型,在此基础上进行典型工况的仿真研究,运用振动测试和流速、风压传感器等相结合的方法,实现对风电机组整机场参数及振动响应的在线监测,深入研究风电机组整机振动传播规律。本项目将在风电机组整机建模方面取得新的进展,掌握整机非线性振动的机理与传播规律,获得典型工况下机组的振动特征,研究成果直接应用于该类设备的具体设计和故障诊断。
本项目结合国内外动力学、仿真与测试技术的最新进展,基于有限元理论建立了齿轮-转子传动系统有限元模型,研究了齿轮的稳态温度场、瞬态温度场分布及齿轮稳态温度场随功率、转速、摩擦系数及润滑油温度的变化规律。最后将热场分析结果导入到结构场求得了齿轮热变形。根据热分析所得到结果,对冷态和热态齿轮进行静态接触分析,研究一个啮合周期内齿轮的接触变形、接触应力的变化规律。并根据齿轮的转角位移,计算了一个啮合周期内传递误差和时变刚度。使用集中参数法,建立了包含啮合刚度、支承刚度、齿侧间隙、传动误差以及外部载荷激励的动力学模型。应用龙格库塔算法进行求解,分别分析输入转速与齿侧间隙对系统非线性响应特性的影响。根据齿轮啮合特性,系统地分析推导了太阳轮-行星轮、内齿圈-行星轮单、双齿啮合时各个啮合齿面的摩擦力臂。基于混合弹流润滑模型,分析了各个啮合齿面间的摩擦力。建立了包含混合弹流润滑摩擦力、时变啮合刚度、传动误差与齿侧间隙等因素的多自由度的平移-扭转耦合集中参数非线性动力学模型。本项目研究揭示了风电机组非线性振动机理,为风电机组故障诊断提供了理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
掘进工作面局部通风风筒悬挂位置的数值模拟
秦巴山区地质灾害发育规律研究——以镇巴县幅为例
不同交易收费类型组合的电商平台 双边定价及影响研究
采用黏弹性人工边界时显式算法稳定性条件
多兆瓦级风电机组控制软件容错机制
大兆瓦级风电制动器制动机理及多目标结构优化
兆瓦级风电增速箱复杂多变冲击载荷抑制与载荷分流机理的研究
风电机组主传动链多维耦合振动机理及能量传递特性研究