Linear force motor has become a main drive technology of direct-drive electrohydraulic servo valve in the future. Iron loss induced in the magnetic materials is an important factor to key performance of linear force motor such as thermal stability, frequency response and transfer efficiency. Thus, a pattern structure of layering magnetic conduction for high-performance linear force motor is proposed, derived from research on eddy loss mechanism of layering magnetic conduction. Electromagnetic-thermal-stress multi-field coupling model of that structure is established, and effects of layering magnetic conduction parameters on key performance of thermal stability, frequency response and transfer efficiency are revealed by simulation. Furthermore, optimal design of layering magnetic conduction structure could be realized combining objective of maximum transfer efficiency, with constrained condition of required thermal stability and frequency response. The results can provide theoretical basis and research method for mechanism innovation in structure of high-performance linear force motor. The project will be focused on three related basis problem of linear force motor, which are: eddy loss mechanism and application of layering magnetic conduction, multi-field coupling model for layering magnetic conduction structure of linear force motor, optimal design of layering magnetic conduction structure with the objective of maximum transfer efficiency. The theory and method will be applied based on theoretical and experiment work. The project is helpful to enhance our applied basic research of frontier technology in electrohydraulic servo valve.
线性力马达是引领未来直动式电液伺服阀发展的主流驱动技术。导磁材料产生的铁芯损耗是影响线性力马达热稳定、频响和效率等关键性能的重要因素。为此,项目从分层导磁技术的涡流损耗机理研究出发,提出一种适用于高性能线性力马达的新型分层导磁结构,建立基于该结构的电磁-热-应力多场耦合模型,获得分层导磁结构参数对热稳定、频响和效率等关键性能的影响规律,并以效率最高为目标、频响和热稳定性能要求等为约束条件,实现分层导磁结构的优化设计,为高性能线性力马达的结构机理创新研究提供理论基础和研究方法。项目就分层导磁技术的涡流损耗机理及应用研究、基于分层导磁结构的线性力马达多场耦合模型研究、以效率最高为目标的分层导磁结构优化设计等相关基础问题开展研究,在完成理论分析与实验验证的基础上,实现上述理论与方法应用。通过本项目研究,加强我国在直动式电液伺服阀前沿技术研究中的理论基础。
线性力马达作为一种高性能的电磁驱动器,是引领未来直动式电液伺服阀发展的主流驱动技术。导磁材料产生的铁芯损耗是影响电磁驱动器热稳定、频响和效率等关键性能的重要因素。为此,项目从分层导磁技术的涡流损耗机理研究出发,提出卷绕式和径向式两种分层导磁结构的零部件设计思路,结合工作气隙的磁路分析方法,实现在电液开关阀、电液比例阀、电液伺服阀、电连接器等领域电磁驱动器中的应用研究,并建立基于导磁结构的电磁机和电磁热多场耦合模型,获得分层导磁结构参数对关键性能的影响规律,实现分层导磁结构的优化设计,为高性能驱动器的结构机理创新研究提供理论基础和研究方法。项目就分层导磁技术的低涡流损耗机理及应用研究、基于分层导磁结构的高性能驱动器多场耦合模型研究、高性能驱动器的结构参数优化设计及实验研究等相关基础问题开展研究,在完成理论分析与实验验证的基础上,实现上述理论与方法应用。通过本项目研究,分析了高性能驱动器的作用机理,掌握了分层导磁技术在驱动器的设计应用方法和电磁、热、机械三者之间参数的转换关系,建立了驱动器的实验测试分析平台,有助于加强我国在直动式电液伺服阀等前沿技术研究中的理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
基于多模态信息特征融合的犯罪预测算法研究
基于细粒度词表示的命名实体识别研究
基于二维材料的自旋-轨道矩研究进展
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
高性能新型结构压电超声马达研究
基于磁流变液的可控非线性电磁超材料关键技术研究
基于分层深度表示的行为识别关键技术研究
基于阶梯分层式微结构的高性能柔性磁场传感器研究