Near space vehicles have valuable military application prospects in efficient penetrations and quickly strikes. For the attitude control problem of the near space vehicles, a cone-derived waverider is selected as the research object in this proposal. The attitude control system, which has the properties of strong stability, fast accuracy, and robust adaptability, is designed by using higher-order sliding mode control theory. The main contents of this research are as follows. Firstly, the problem of the higher-order sliding manifold reached in finite time with fast and smooth process is studied, and a stable attitude control system with fast response can be achieved. Secondly, the problem of robust adaptability in the higher-order sliding mode control is studied, and the robust adaptability of the attitude control system can be obtained by compensating the uncertainties and disturbances adaptively, at the same time, the problem of overestimation of the control gains can be avoided. Thirdly, the dynamics of the actuators, including the constraints of bandwidth, deflection position, and deflection rate, are considered in the procedure of the attitude control system design. To ensure the stability under the control input saturation, a higher-order sliding mode control method with control input constraints is studied. Finally, to demonstrate the real-time and effectiveness of the proposed attitude control method, some semi-physics simulations studies are carried out. The research results will provide a theoretical basis and technical support for the innovation and development of the near space hypersonic vehicles flight control techniques in our country.
近空间高超声速滑翔飞行器在高效突防、快速打击等方面具有重要的军事应用前景。本项目针对近空间高超声速滑翔飞行器的姿态控制问题,以一种锥导乘波体飞行器为研究对象,基于高阶滑模控制理论设计具有强稳定性、快速准确性和鲁棒自适应性的姿态控制系统。主要内容包括:(1)研究高阶滑模流形的有限时间快速平稳趋近问题,在保证姿态控制系统稳定的前提下提高系统的响应速度;(2)研究高阶滑模的鲁棒自适应问题,实现对不确定性和干扰的自适应高精度补偿和防止控制增益的过度估计,提高姿态控制系统的鲁棒自适应性;(3)考虑执行器的动力学特性(带宽、偏转位置和速率的限制),研究控制受限时的高阶滑模姿态控制方法,保证姿态控制系统在输入饱和时的稳定性;(4)通过半实物仿真实验检验所研究算法在工程应用上的实时性和有效性。项目的研究成果将为我国近空间高超声速飞行控制技术的创新和发展提供理论支撑。
近空间高超声速滑翔飞行器高超声速滑翔飞行器在高效突防、快速打击等方面具有重要的军事应用前景。本项目针对高超声速滑翔飞行器的姿态控制问题,以高阶滑模控制理论为基础,在面向控制的建模、姿态控制律设计和仿真验证方面进行了研究,得到了有意义的结果。主要贡献如下:(1)以计算流体力学(CFD)和气动工程估算为手段,基于多项式拟合和简化,分别建立了一种乘波构型滑翔飞行器和一种轴对称滑翔飞行器的姿态动力学模型;(2)基于齐次系统理论提出了一种多变量积分终端滑模控制方法(本质上是一种二阶滑模控制),并应用于高超声速滑翔飞行器的姿态容错控制中,考虑了执行器的效率损失故障情形,该方法不需要时标分离假设,在理论上保证了闭环姿态控制系统的稳定性;(3)基于最优控制理论和积分滑模概念,提出了一种准最优自适应高阶滑模控制方法,优化了系统状态到达高阶滑模流形的趋近过程,设计了一种防止增益过度估计的自适应方法;(4)研究了基于确定时间控制(一种特殊的有限时间控制)的干扰观测器设计方法,实现了对高超声速滑翔飞行器姿态动力学模型中匹配和非匹配不确定性的快速估计与补偿,提高了闭环系统姿态控制精度;(5)在实验室高超声速滑翔飞行器仿真平台上验证了本项目所提出算法的有效性。在国内外期刊上发表标注本项目资助号的SCI论文9篇(其中IEEE汇刊论文4篇),EI检索会议论文10篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
基于多模态信息特征融合的犯罪预测算法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
HMGA表达相关microRNA表观遗传调控对发育小脑放疗后神经细胞再生中NEPs细胞群活化的影响
高超声速近空间飞行器带有时域约束的大包线鲁棒自适应控制
高超声速再入滑翔飞行器多约束全局滑模精确制导研究
高超声速滑翔飞行器再入机动制导与精细姿态控制研究
近空间飞行器飞行姿态与重心运动协调一体化鲁棒自适应控制研究