The traditional on-machine contact inspection method is characterized by single mode and low efficiency, and it is difficult to realize inspecting localization and to evaluate machining quality for workpieces with complex shaped surfaces fast and automatically. To solve these problems, the research on on-machine intelligent inspecting methods for workpieces with complex shaped surfaces based on multiple-sensor integration in closed-loop manufacturing is presented, relying on theories and technologies of reverse engineering, control theory, intelligent inspection, etc. The main research contents include automated inspecting localization methods for workpieces with complex feature structure, inspecting path planning algorithm for workpieces with 3D freeform surface, fast reconstruction algorithm of 3D model for evaluating machining quality, compensation algorithm for inspecting errors, and further verification for inspecting methods and algorithms proposed above in machining plant. The research aims at the integration of digital chains including inspection, design and machining, and realizing on-machine intelligent inspection for workpieces in a long machine-cycle by a unified transfer model of data and information from digital chains. The on-machine inspecting technology proposed is characterized by great flexibility, high level of integration, inspecting process without human intervention and operation suitable for machining plant. The magnificence of the research achievements no only lies in the integration of reverse engineering and NC machining, it also can be extendedly applied in different kinds of NC machining systems. And, the application of the research achievements in home-made NC systems can enhance performances of systems themselves and raise the intelligent level of machining process.
针对当前在机接触式检测方式单一,检测效率低,难以快速、自动地实现复杂型面工件在加工过程中的检测定位和加工质量评估等问题,本项目将以逆向工程、控制理论、智能检测等理论和技术为基础,面向复杂型面加工件进行基于多传感器集成的在机智能化检测研究。主要研究内容包括复杂曲面工件的检测自定位方法、自由曲面的自适应检测路径规划算法、用于工件加工质量快速评估的三维模型快速反求算法、系统检测误差补偿算法等,并对上述研究结果进行加工现场的检测验证。研究目标旨在将检测与设计、加工数字链环节相集成,建立统一的数据信息传递模型,实现复杂长周期加工件在机检测过程的智能化。该检测方法具有灵活性强、集成度高、检测过程不需人为干预和适用于加工现场操作的特点。该研究成果的意义不仅是将逆向工程技术引入数控加工,还可扩展应用于不同种类的数控型面加工系统,其成果的应用可增强国产数控加工系统的功能,提高工件制造过程的智能化水平。
为了满足制造业对检测技术与装备的下述需求:.1)工件型面检测自动化。2)数字化加工过程在机检测。3)复杂型面工件在机自动化全局检测。.通过本项目的实施研发出下列新型检测装备:.1)在机3D接触式测量系统。2)面向复杂型面工件的复合式检测装置。3)面向闭环制造的加工中心在机智能化检测系统。.上述成果使检测由点、线、平面正在走向三维立体;由离线走向在线。这些新检测装备不仅具有精确性和便捷性,而且具有集成性﹑快速性﹑灵活性。.在项目实施的过程中解决了在机检测系统标定算法;自由曲面的自适应检测路径规划算法;工件检测定位及移动机器人定位算法等理论问题,以及开发了具有人机交互功能的在机检测软件。. 本项目研究成果可扩展应用于不同种类的数控型面加工系统,其成果的应用可增强国产数控加工系统的功能,提高工件制造过程的智能化水平。.
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
基于LASSO-SVMR模型城市生活需水量的预测
基于SSVEP 直接脑控机器人方向和速度研究
低轨卫星通信信道分配策略
基于多模态信息特征融合的犯罪预测算法研究
HMGA表达相关microRNA表观遗传调控对发育小脑放疗后神经细胞再生中NEPs细胞群活化的影响
复杂空间型面误差在机测评及反馈补偿原理与方法
基于空间数据挖掘的复杂型面制造质量特征获取方法研究
基于2D-SAFT的复杂型面构件超声检测方法研究
基于原位检测的复杂曲面加工-测量的闭环加工方法研究