Reentry orbit maneuver is the key technology to realize reentry maneuvering penetration of hypersonic glide vehicles. But the stage of reentry maneuver is also the most difficult and complicated stage in the whole flight envelope of hypersonic glide vehicles. Compared with traditional vehicles, the design of guidance and attitude control systems for hypersonic reentry flights is a highly challenging task due to the unique characteristics of the vehicle dynamics, such as fast time-varying parameters, variously strong coupling effects, high nonlinearities, grave uncertainties, and severe multiple constraints. This is because that in reentry maneuvering flight the ranges of flight altitude and Mach are large, the flight environment is complex, the aerodynamic characteristics change sharply, and the constraints are too many and harsh..In order to ensure the autonomous maneuvering penetration ability, strong robust stability, and fine attitude control performance of reentry maneuver for hypersonic glide vehicles with complex flight conditions, we will carry out the multi-constrained fast trajectory optimization, the online optimal feedback maneuver guidance, fine attitude control, and simulation verification for hypersonic gliding reentry vehicles. In particular, the performance of fine attitude control mainly consists of minimizing the dynamic errors of the angle of attack, sideslip angle and tilt angle. Our ultimate goal is to achieve high precision, fast response, strong robustness and continuous stability control in the reentry maneuvering flight. The breakthrough of these key technologies and the anticipated research results will provide basic theory and technical support for the future development of unpowered hypersonic glide reentry vehicles.
再入机动变轨是高超声速滑翔飞行器实现再入段机动突防的关键技术,但再入机动段也是高超声速滑翔飞行器在整个飞行过程中所面临的最复杂阶段。与传统飞行器相比,由于高超声速滑翔飞行器再入机动飞行中飞行高度和马赫数跨度范围大、飞行环境复杂、气动特性变化剧烈、约束条件多,导致高超声速再入飞行中制导与姿态控制系统具有快时变、强耦合、强非线性、严重不确定性、多苛刻约束等典型特征。为保证复杂飞行条件下高超声速滑翔飞行器再入机动飞行具有自主机动突防能力、强鲁棒稳定性能以及考虑攻角、倾斜角和侧滑角动态误差最小化的精细姿态控制性能,本项目拟对高超声速滑翔飞行器再入段的多约束快速轨迹优化、在线最优反馈机动制导、精细姿态控制及仿真验证等方面开展深入研究,最终实现再入机动变轨飞行的高精度、快响应、强鲁棒连续稳定控制。本项目关键技术的突破和预期研究成果将为我国发展无动力高超声速滑翔式再入机动飞行器提供基础理论和技术支持。
高超声速滑翔飞行器再入机动飞行中飞行高度和马赫数跨度范围大、飞行环境复杂、气动特性变化剧烈、约束条件多,为保证复杂飞行条件下再入机动飞行具有自主机动突防能力、强鲁棒稳定性能以及精细姿态控制性能,本项目针对高超声速滑翔飞行器再入段的多约束快速轨迹优化、在线最优反馈机动制导、精细姿态控制及仿真验证等方面开展了深入研究。.1、完成了基于改进Gauss伪谱法的高超声速滑翔飞行器再入轨迹优化与制导方法研究:(1)为提升高超声速滑翔飞行器再入气动系数的刻画精度,提出了一种改进的再入气动系数拟合模型;(2)设计了多误差检测配点自适应伪谱法算法,优化了误差判定的原则,制定了基于误差和曲率的优化策略,解决了一类多误差检测点的自适应伪谱法解决轨迹优化问题;(3)提出一种自适应Gauss伪谱法制导方案,利用反演法对期望攻角与倾侧角进行跟踪控制,完成了再入飞行器实时反馈制导任务。.2、完成了多约束高超声速滑翔飞行器再入机动制导方法研究:(1)针对多禁飞区约束问题,提出了一种基于三触角探测的侧滑角瞬变机动制导方法;(2)针对动态禁飞区的规避问题,提出了改进的基于三触角的预警区域规避方法;(3)针对触角探测反馈机制在整个机动制导过程中单探测周期计算时间变化大,初始阶段探测计算时间长等问题,采用分段分步制导的思想,设计基于双模式多触角的机动制导方法。.3、完成了考虑执行器特性的高超声速飞行器线性变参数(LPV)精细化姿态控制方法研究:(1)提出了一种LPV抗饱和模型参考控制器设计方法,采用两步法解决高速机动飞行过程中易出现的执行器饱和问题;(2)提出了一种有限时间时变滑模LPV控制器设计方法,所设计的控制器能够满足执行器有限时间快速响应的要求,且能够有效消除系统抖振现象;(3)针对执行器发生部分失效故障,提出了一种基于状态观测器的LPV容错控制器设计方法;(4)基于dSPACE实时仿真实验平台,对所设计的飞行控制系统进行了仿真验证。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
城市轨道交通车站火灾情况下客流疏散能力评价
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于FTA-BN模型的页岩气井口装置失效概率分析
复杂条件下高超声速飞行器再入滑翔制导方法研究
高超声速飞行器再入制导与姿态控制一体化设计研究
高超声速再入滑翔飞行器多约束全局滑模精确制导研究
高超声速飞行器建模与精细姿态控制研究