As one of the most cutting edge area in materials science and catalysis, development of noble metal-free carbon-based catalysts has drawn intensive attention. Although, compared with conventional noble metal catalysts, carbon-based catalysts possess a range of advantages including huge surface area, earth-abundance, low cost, environmental compatibility, high corrosion resistance and so forth. There are still some problems, such as low catalytic activity, large amount of catalyst usage, limited application and poor stability of the noble metal-free carbon-based catalysts. In this project, the heteroatom doped porous graphene, graphene based metal oxide, and porous carbon dispersed single atom catalysts are fabricated. The catalytic performances of oxidation, reduction and addition type molecule transformation reactions are applied to explore the activities of the prepared catalysts. Optimization the reaction conditions, scope and limitation of the substrates, along with studying the reusability of catalysts, development of new reaction system, extensively physicochemical characterizations of the catalysts and density-functional theory (DFT) calculation are carried out for understanding the reaction mechanism as well as structure-performance relationship. It will provide scientific guidance for the design of novel catalytic materials and the exploration of new catalytic systems. This work addresses novel strategies for preparation of advanced carbon-based catalysts, providing an insightful guidance for developing novel and efficient carbon-based catalysts.
碳基非贵金属催化剂的研制和开发是目前催化领域与材料科学的前沿方向之一。相对于传统的贵金属催化剂,其具有比表面积大、来源广泛、价格低廉、环境友好、耐腐蚀等独特优点,但目前碳基非贵金属催化剂仍存在催化性活性低、催化剂用量大、催化剂应用范围窄、稳定性差等问题。针对这些问题,本项目构筑了杂原子掺杂的多孔石墨烯、石墨烯基金属氧化物和多孔碳分散的单原子催化剂。重点探索其应用于催化氧化、还原、加成等类型的分子变换反应的催化性能。优化反应条件,探讨底物的适用性和催化剂的回收利用性,拓展新反应体系。综合多种理化表征手段和理论计算揭示催化作用机制,构建催化剂结构与性能的构效关系,进而为纳米碳材料催化剂的改造、优化和创新提供科学依据和技术指导。
碳基非贵金属催化剂的研制和开发是目前催化领域与材料科学的前沿方向之一,但如何提高碳基非贵金属催化剂的催化性活性、降低催化剂用量、拓宽催化剂应用范围和提升催化剂稳定性差是实现其应用前亟待解决的问题。本项目通过筛选合适的模板、调控含杂原子碳源用量、煅烧过程中程序升温速率以及煅烧温度等条件对碳材料的组成和形貌进行调控。制备的杂原子掺杂石墨烯/多孔碳材料在多相催化等领域表现出良好的应用效果。利用碳材料和金属化合物进行复合,碳材料的引入可以起到提升导电性、光吸收性能及稳定活性物质的作用。此外,碳材料与特定金属化合物间相结合可以发挥的正向协同作用,进而显著地提高催化剂活性。制备的石墨烯/多孔碳-金属化合物复合材料在光催化RhB降解,光催化芳醛氧化、光电催化甲醇氧化反应、光催化芬顿反应、电解水制氢反应等应用领域表现出了优异的性能。通过选择合适的模板、碳源、金属前驱体以及单原子稳定剂,控制煅烧过程中程序升温速率和煅烧温度等因素来调控单原子催化剂的形貌和单原子金属的负载量,成功制备了多孔碳分散的过渡金属单原子催化剂,此类碳基催化剂在选择性催化硝基苯氧化和硅烷氧化反应中展现出良好的催化活性。综合多种理化表征手段和理论计算揭示催化作用机制,构建碳基催化剂结构与性能的构效关系。本项目为各类碳基非贵金属催化剂的设计制备及替代贵金属催化体系的开发提供理论依据和技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
上转换纳米材料在光动力疗法中的研究进展
煤/生物质流态化富氧燃烧的CO_2富集特性
自组装短肽SciobioⅡ对关节软骨损伤修复过程的探究
拉应力下碳纳米管增强高分子基复合材料的应力分布
双功能三掺杂型碳基非贵金属催化剂的构筑及构效关系研究
非贵金属-氮-碳基催化材料的构建及其选择性氧化、加氢性能研究
基于吡啶聚合物的高效碳基非贵金属氧还原催化剂的设计、制备及性能研究
基于碳纳米纤维的非贵金属电催化剂的理性合成和性能研究