As a supplement of conversion of fossil fuels to hydrogen, gasification of wood wastes into hydrogen can reduce the environmental problems caused by carbon emissions. It has a significant value that process regulation mechanism of directed catalytic gasification of wood waste on aluminum slag for hydrogen production is studied, for exploring to research wood waste to hydrogen and aluminum slag resource utilization. This project is to study the catalytic gasification of wood waste on aluminum slag using fixed bed reactor to understand the relationship between structural evolution of free radical intermediates and the gas composition. The key conversion pathway of biomass components during catalytic gasification is determined. A new cheap and efficient catalyst was developed by loading active components iron and calcium on Aluminum Slag, which is to control the formation of by-product tar and CO2, enhancing the steam gasification reaction of bio-char and tar reforming during gasification. Hydrogen production is selectively promoted. The reaction mechanism of catalytic gasification of wood wastes for hydrogen production was summarized. The main factors affecting the reaction rate and selectivity of biomass gasification were grasped and a quantitative model was established to realize the regulation of biomass gasification process for hydrogen conversion. The data presented will lay a theoretical foundation for the development of new biomass catalyst for hydrogen production and improving the efficiency of biomass catalytic gasification into hydrogen.
木质废弃物热解气化高效转化为氢气,作为化石燃料制氢的补充,可以降低因碳排放而引起的环境问题。利用炼铝废渣作为催化剂,研究木质废弃物定向催化气化制氢的过程调控机制,对于木质废弃物制氢与炼铝废渣的资源化利用具有一定的研究价值。本项目应用固定床催化气化反应,充分认识炼铝废渣催化木质废弃物气化过程中热解自由基中间体的结构演绎与气体组成的关系,确定木质废弃物催化气化过程中生物质组分关键转化路径。拟采用在炼铝废渣上负载活性组分铁与钙的方法,开发新型廉价高效催化剂,调控副产物焦油、CO2生成,在热解气形成源头强化重质组分及烃的催化重整反应与生物质炭的水蒸气气化反应,选择性地促进氢气产生。阐释木质废弃物定向催化气化制氢的反应机理,掌握影响生物质催化气化反应速率与选择性的主要因素,建立定量模型,实现对生物质催化气化制氢过程的定向调控。为开发生物质气化制氢新型催化剂、提高生物质催化气化制氢的效率奠定理论基础。
利用炼铝废渣作为催化剂,开发其定向催化生物质热解制氢技术,以满足日益增长的石油化工、燃料电池行业对氢气的需求,提高生物质热解经济性。本项目应用固定床催化热解反应,通过制备铁基炭铝复合材料过程中炼铝废渣催化热解反应、氢气生成、焦油裂解的分析,研究生物质在炼铝废渣及其改性生物炭表面催化反应关键路径,揭示了生物质热解制氢过程中C-O-M活性中间体的结构演变及其定向调控机制。优化了炼铝废渣的性能,定向调控生物质热解制氢过程,将软木的氢气产率提高20%以上、硬木氢气产率提高18.48%,氢气组分含量高达60%以上,焦油组分的产率明显降低。同时利用制备的炭铝复合材料进行重金属吸附,Cr(VI)的脱除率达95%以上。从生物质全生命周期碳循环角度来看,热解形成的C-O-M中间体结构起到了有效的固碳作用,得到的富氢燃气、炭铝复合材料进行了高值利用,减少了碳的排放,从而形成了负碳转化技术。
{{i.achievement_title}}
数据更新时间:2023-05-31
采用深度学习的铣刀磨损状态预测模型
铁酸锌的制备及光催化作用研究现状
多酸基硫化态催化剂的加氢脱硫和电解水析氢应用
基于EMD与小波阈值的爆破震动信号去噪方法
有理Bezier曲线的近似弦长参数化算法
MClx协同Pd/C催化木质素氢解过程机理与产物调控规律研究
嗜热厌氧菌降解生物质废弃物耦合生物制氢和燃料乙醇协同机制研究
留住太阳的光热-太阳能热解超临界水湿生物质气化制氢
基于烃池机理的生物质和多氢原料催化共热解制油过程协同效应和调控机制研究