Lithium-oxygen (Li-O2) batteries have garnered enormous interest due to their superior theoretical specific energy density. However, critical challenges severely restrict the practical application of Li-O2 batteries, including low practical energy density, high overpotential, poor cycle life and so on. The above problems are mainly affected by the performance of the cathode catalysts. Hence the design of novel cathode catalysts that can improve the electrochemical performance, is urgently needed for the development of Li-O2 batteries. Aiming at these challenges, a new strategy for cathode catalysts based on redox-active coordination polymers (CPs) in Li-O2 batteries is raised in this proposal. By utilizing the inorganic-organic component features of CPs and taking the advantages of their readily tunable components and structures, the high-performance cathode catalysts could be expected. In this project, we will focus on the research and development of redox-active CPs based cathode catalysts on the basis of the strategy for the exploration of new cathode catalyst system for Li-O2 batteries, and propose a novel strategy towards a whole new generation of cathode materials in Li-O2 batteries, that is, to introduce organic/inorganic catalytic active center into porous CPs via targeted design of structure and composition to construct the redox-active CPs. In addition to the exploration of new methods for targeted construction and modulation of the materials, much effort will be made on the systematic research of the performances of the resulted materials as cathode catalysts of Li-O2 batteries. The relationship between the structure and properties of the materials will also be illustrated to enhance the batteries performance. The achievements of the project will contribute to the targeted construction and application of cathode catalysts in Li-O2 batteries in both theoretical and experimental support.
近年来,锂-氧气电池因具有较高的理论能量密度受到广泛关注,并展现出良好的应用前景。然而,锂-氧气电池存在实际能量密度低、过电位高、循环寿命短等诸多科学问题,以上问题主要受正极催化剂性能的影响。因此,探索并设计开发新型、高效的锂-氧气电池正极催化剂是该研究方向亟待解决的科学问题之一。针对该问题,我们拟提出基于氧化还原活性配位聚合物(CPs)的锂-氧气正极催化剂材料构筑新思路,利用CPs无机-有机杂化的组成特性和组成、结构易于调控的优势,有望获得高性能的正极催化剂材料。在本项目中,我们基于该设计思想开展研究,拟通过将有机/无机催化活性中心引入框架中制备氧化还原活性CPs,开拓新的锂-氧气正极催化剂体系,并在探索材料构筑及结构-性能调控方法的基础上,系统研究该类材料作为锂-氧气电池正极催化剂的性质,总结结构-性能关系和调控规律,为锂-氧气电池正极催化剂的构筑和应用提供新的理论和实验依据。
近年来,锂-氧气电池因具有较高理论能量密度受到广泛关注。然而,锂-氧气电池存在实际能量密度低、过电位高、循环寿命短等诸多科学问题,以上问题主要受正极催化剂性能的影响。因此,探索并设计开发新型、高效的锂-氧气电池正极催化剂是该研究方向亟待解决的科学问题之一。配位聚合物材料具有结构有序性、组成多样性、结构可剪裁性等优势,已成为构筑高性能电极材料的理想平台。然而多数配位聚合物基电极材料存在氧化还原活性位点密度少、电化学活性差等缺点。因此,深入研究配位聚合物基电极材料的定向构筑策略和方法,揭示材料组成、结构对性能的影响机制对新型锂-氧气电池正极催化剂的设计构筑具有重要意义。.在本项目研究中,我们针对新型多功能位点配位聚合物的设计合成、结构调控及其在能源存储与转化领域应用等问题,以“配位聚合物材料”为基础,结合晶体工程技术,在配位聚合物的精准合成、结构调控及其在锂-氧气电池中的应用等方面取得了系列创新成果。本项目有关研究成果已在CCS Chem.、Adv. Funct. Mater.、Adv. Sci.、ACS Appl. Mater. Interfaces等刊物发表SCI收录论文7篇,申请专利1项。总体上,项目成果为锂-氧气电池正极催化剂和新型电极材料的定向构筑及性能调控等提供了科学依据,对推动相关领域的发展具有重要作用,基本实现了项目预期的研究目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
基于Nrf2/ARE信号通路人参皂苷CK靶向调节Aβ沉积耦联氧化应激防治阿尔茨海默病的分子机制研究
LncRNA-HOTAIR表观遗传调控miR-34a的表达影响肝癌细胞侵袭迁移及转移的作用及分子机制
微量水参与的锂-氧气电池正极反应研究
锂硫电池用氧化物/硫复合正极构筑及电化学性能研究
碳载“双功能”催化剂正极的可控构筑及锂空气电池性能研究
基于超氧化物的金属-氧气电池中正极过程的研究与材料设计