In this project, we will study the following several problems:.1)Suppose that A is a unital, simple, real rank zero C*-algebra. Must the linear.span of the projections coincide with A?.2)Suppose that A is a unital, simple, amenable C*-algebra. Is the linear span of.the projections in A closed in the norm topology?.3)Is every 2-local derivation on a general C*-algebra a derivation?.4)2-local derivations on some subspace lattice algebras, such as Nest algebras,.CSL algebras and so on..5)Is every weak-2-local derivation on an arbitrary von Neumann algebra a.derivation?
本课题我们将研究以下几个问题:.1) 设A是单的有单位的实秩零的C*-代数. 则A是否由A中的投影线性生成?.2) 设A是单的有单位的顺从的C*-代数. 则由A中的投影全体线性生成的子空间在A中是否是范数闭的?.3) 任意C*-代数上的2-局部导子是否都是导子?.4) Nest代数、CSL代数等一些子空间代数上的2-局部导子问题..5) 任意von Neumann代数上的弱-2-局部导子是否都是导子?
算子代数是泛函分析的重要分支,对它的2-局部导子研究是近期的热点课题。我们围绕2-局部导子与相关的算子理论算子代数问题及其应用方面展开了多方面的研究工作,取得了重要的进展。证明了I型的C*-代数上的2-局部导子都是导子,对一类非I型的C*-代数及群代数和一些非自伴的代数也获得了相应的结果;也研究了具体的函数空间上算子理论算子代数,证明了Bergman投影的算子性质,给出了Lp-Lq的有界性问题、紧性问题的完整性刻画;借助泛函分析的工具证明了J-自伴型的行列式点过程的中心极限定理是成立的。基于我们的工作,已完成学术论文2 篇,基本完成了预定的目标;其中1 篇论文已接受,1 篇论文尚在投稿中。同时在项目资助下,我们组织了多次学术会议和周期性的seminar。项目主持人也多次受邀参加相关的学术活动汇报了我们的工作,主要参与人黄文波二十余次到复旦大学开展了科研工作,为未来进一步的科研合作奠定良好的基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway
CD24-CD44+/ALDH+/CD201+促进非小细胞肺癌干细胞的表型鉴定及自我更新转化的机制
C*-代数上的投影和2-局部导子
附属于von Neumann代数的各类可测算子代数上导子和局部导子理论的研究
Hilbert C*-模算子代数上的Lie导子及相关问题
算子代数上的导子和可乘映射