The stability of Minkowski space-time, Shwarzschild space-time and Kerr space-time are essential problems in general relativity. As a first step of studying the stability problems, the global asymptotic behavior of solutions to the Cauchy problem of linear and some nonlinear wave equations on those three vacuum space-times will be investigated in this program. Radiation field will be used to describe the asymptotic behavior for wave solutions. For the linear case, the coefficient of leading term in the asymptotic expansions for the solution along the light rays will define the radiation field. For the nonlinear case, if the solution globally exists and has asymptotic expansions along the light rays, then the term which have the same order as the leading term in the corresponding linear case will give the definition of the radiation field. Each vacuum space-time will be compactified such that the wave solutions will have simple behavior near the boundary of the compactification. Both forward and backward energy estimates will be obtained for a conformal transformation of the equation on the compactified space-time. From this the mapping property for the map from the Cauchy data to the radiation field will be proved. And the characteristic initial data problems will be studied so that the wave equations can be solved backward.
Minkowski时空,Shwarzschild时空和Kerr时空的稳定性问题是广义相对论中的重要问题。作为研究稳定性问题的第一步,在此项目中将主要研究这三类真空时空的线性波动方程和一些非线性波动方程的Cauchy问题的解的整体渐进行为。辐射场将会被用来描述这些波动方程解的渐进行为。对线性情况,方程的解沿着光线传播方向渐进展开的主项系数即定义为辐射场。对非线性情况,如果解整体存在并沿着光线传播方向有渐进展开,那么和线性情况主项同阶项的系数将会被定义为辐射场。对每一种时空背景下的波动方程,整个时空将会被合理紧化使得解在这些紧化空间上边界处的行为有简单的表达。同时方程本身在进行合理的共形变换后,会在紧化空间上得到向前和向后的能量估计。由此可以给出从Cauchy初值到辐射场的映射的性质,并回答波动方程从辐射场定义处反向解回的问题。
Minkowski时空,Schwarzschild时空和Kerr时空的稳定性问题是广义相对论中的重要问题。作为研究稳定性问题的第一步,在此项目中将主要研究这三类真空时空的线性波动方程和一些非线性波动方程的Cauchy问题的解的整体渐进行为。辐射场将会被用来描述这些波动方程解的渐进行为。我们主要对Minkowski空间上的满足零条件的非线性波动方程和一些半线性波动方程回答了这些问题,同时对Schwarzschild上半线性波动方程部分回答了这些问题。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于国产化替代环境下高校计算机教学的研究
基于综合治理和水文模型的广西县域石漠化小流域区划研究
东太平洋红藻诊断色素浓度的卫星遥感研究
非牛顿流体剪切稀化特性的分子动力学模拟
中国出口经济收益及出口外资渗透率分析--基于国民收入视角
白细胞介素29(干扰素-Lambda1)对类风湿关节炎Th1/Th2细胞因子免疫调节作用及其机制研究
时空流形中的非线性波动方程
几类非线性波动方程 (组) 新的高效数值方法研究
Nevanlinna理论在几类复差分方程中的应用
格点系统与波动方程的时空行为