The objective of the proposed study is to develop an effective vibration control methodology and theory, control algorithm and design method of intelligent control system for multi-phase coupling nonlinear vibration of stay cables in cable-stayed bridge with long-span. On the basis of differential geometry theory for nonlinear vibration system, some decentralized linearized control theories for vortex vibration and rain-wind induced vibration of stay cables will be proposed, such as decouping method, decentralized lineaized method, designed method on decentralized controller and inverse transformation method of decentralized states. Dynamic performance, control efficiency and aero-dynamic force are numerically and experimentally investigated on the complex nonlinear vibration of the controlled stay cables. Based on the numerical and experimental investigation, critical wind speed and locked region for vortex vibration are analyzed. For rain-wind induced vibration of the controlled stay cable, critical conditions and dynamic poperties of rivulet on stay cable surface are studied, and critical conditions for aero-unstable for controlled stay cable are developed. For the purpose of mitigation vibration of vortex and rain-wind induced vibration of the stay cable, intelligent vibration control system based on the magnetorheological(MR) fluids damper with negative stiffness is studied. BY numerical analysis and experimental investigation, negative stiffness performance for semi-active controll system for multi-phase coupling nonlinear vibration of stay cables are conducted. Considering negative/positive stiffness of MR damper and couping of stay cable with MR damper, design approach and theory of intelligent vibration control system for multi-phase coupling nonlinear vibration of stay cables are proposed. The proposed approach is the advancement of effective controll approach for stay cable in cable-stayed bridge, and construction of more economical and safer long-span bridges for public. The outcome will advance the basic science aspects of bridge engineering and have a significant impact on the nation's economic, societal and many other aspects.
本项目研究大跨度斜拉桥拉索涡激振动、风雨激振等多相介质耦合非线性振动的控制理论与方法。首先利用非线性系统的微分几何控制理论,研究斜拉索涡激振动、风雨激振等复杂非线性振动控制的解耦方法、分散线性化方法、分散控制器设计方法与分散状态变换的逆变换方法,发展斜拉索复杂非线性振动的分散线性化控制理论与方法;研究受控斜拉索复杂非线性振动的振动特性、气动力特性和减振效果,分析涡激振动临界风速、锁定区变化规律和风雨激振的临界条件、水线振动特性,给出斜拉索气动失稳临界条件;研究斜拉索多相介质耦合复杂非线性振动半主动控制的负刚度特征,考虑磁流变液阻尼器正、负刚度特征以及其与斜拉索的耦合作用,建立斜拉索多相介质耦合复杂非线性振动智能控制的设计方法。本项目研究成果,将形成斜拉索复杂风致非线性振动控制的理论、方法、控制算法及其控制系统设计方法,为大跨度桥梁斜拉索减振提供先进有效的方法,具有重要的理论意义和实用价值。
本项目围绕大跨度桥梁斜拉索涡激振动和风雨振等两类多相介质耦合振动的控制理论与方法开展研究工作。首先探索了利用微分几何理论研究斜拉索涡激振动和风雨振,但在分散线性化和控制系统设计上遇到了无法解决的问题。课题开展了斜拉索风雨振的自适应模糊控制的智能控制理论与方法的研究,考虑斜拉索风雨振气动力特征,提出了斜拉索风雨振动的自适应模糊控制方法,并进行了斜拉索风雨振减振效果及其参数影响的数值分析,分析结果表明所提出的考虑气动力影响的斜拉索风雨振的自适应模糊控制方法能够有效减小斜拉索风雨振的响应,同时也能有效抑制上水线的振荡。针对斜拉索涡激振动的多模态振动特性,开展了斜拉索涡激振动特性及其参数影响规律的研究,分析结果表明随着来流风速的增加,斜拉索发生涡激共振的振型阶次或频率逐步增加,而且在一定的风速下,斜拉索的涡激振动表现为多阶模态同时发生的涡激共振特性。研究了斜拉索涡激振动的被动、主动和半主动控制的减振效果及其参数影响规律。基于粘弹性阻尼材料的剪切耗能特性,提出了增设阻尼型辅助索的斜拉索-阻尼型索网的减振方法,通过理论和数值分析相结合的方法研究了该减振体系的动力特性及其参数影响规律和阻尼器优化设计;并基于理论和数值分析结果,开展了安装粘弹性阻尼器的斜拉索-阻尼型索网减小斜拉索涡激振动的风洞试验,试验研究辅助索安装位置、根数等参数对斜拉索减振效果和流场特性的影响;项目还进行了柔性拉索与磁流变阻尼器的耦合作用建模以及斜拉索-负刚度阻尼减振系统的理论和试验研究。上述研究成果形成了斜拉索涡激振动、风雨振等复杂风致振动控制的理论、方法、控制算法及其控制系统设计方法,具有重要的理论意义和工程应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
滚动直线导轨副静刚度试验装置设计
大跨度斜拉桥拉索参数激励非线性振动及其控制理论与方法
大跨度斜拉桥斜拉索及其系统的振动主动控制
大跨度桥梁斜拉索风雨多相介质耦合振动的精细化研究
基于惯性力的大跨度斜拉桥拉索高阶多模态振动控制研究