The edge-transitive graph is an important research object of algebraic graph theory. In this project, we will study the flag-transitive incidence geometry using the methods of algebraic graph theory, and attack the isomorphism and classification problems of edge-transitive graphs by the incidence graphs of some important incidence geometry. The main research contents are given as follows: First, study the bitransitive permutation groups and edge-transitive graphs by the flag-transitive incidence geometry; Second, classificate certain important flag-transitive designs including the metacyclic and solvable Singer designs; Third, study the isomorphism problems of edge-transitive graphs, and try to given an criterion to the edge-transitive graphs. The researches of this project will expand the research contents of algebraic graph theory and promote the researches and developments of other fields of mathematics.
边传递图是代数图论的重要研究内容,本项目拟利用代数图论方法研究旗传递关联几何,并以重要的关联几何的关联图为导向,研究边传递图的同构问题和分类问题。具体研究内容如下:一、以旗传递关联几何为导向研究双侧传递置换群和边传递图;二、分类几类重要的旗传递设计,包括亚循环和可解Singer设计等;三、研究边传递图的同构问题,给出边传递图同构的判定准则。本项目研究将拓展代数图论的研究内容,推动相关数学领域的渗透研究和发展。
项目以传递图的同构问题及图的圈覆盖问题为主要研究内容,项目研究的重要结果包括:(1)针对点传递图的同构问题,对于给定群G,给出并利用G-点传递图为群G的GI-图的充分或者必要条件,构造了某些群G的GI-图,提出了GI-群和DGI-群的概念,探讨了二面体群等群类的DGI(GI)性质;(2)研究了边传递图的同构问题,利用图的自同构群的性质与子群结构,刻画了边传递图同构的判定准则;(3)刻画了广义Cayley图的同构问题,研究了某些特殊图类中的GCI-群,证明了交错群中只有A4是GCI-群,进一步研究了广义半Cayley图的同构问题;(4)研究了符号图的符号圈覆盖问题,改进了符号图的最短符号圈覆盖长度的上界; (5)充分考虑了图的极大偶因子,给出了极大偶因子长度的上界并刻画了极值图。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
硬件木马:关键问题研究进展及新动向
转录组与代谢联合解析红花槭叶片中青素苷变化机制
基于分形维数和支持向量机的串联电弧故障诊断方法
五轴联动机床几何误差一次装卡测量方法
基于和合思想探究调和气血法调控VEGF-Ang-Notch通路及miRNA干预COPD肺血管重构机制
边传递图
几类边传递图的刻画与构造
边本原图与弧传递图研究
边传递图的刻画及其齐次因子分解