The deep-sea hydrothermal environment is a typical extreme habitat where the interaction among the Earth's hydrosphere, the biosphere and the deep lithosphere is extremely active. Utilizing interdisciplinary research methods involving modern mineralogy and environmental microbiology, the key scientific issue of this project is focused on the molecular mechanisms of thermoelectron-to-valence electron transfer under the synergism of metal sulfide minerals and some thermophilic/mesophilic microorganisms, as well as environmental effects driving the element cycling of carbon and sulfur. The emphasis of the research will include: the mineralogy and thermoelectric transport properties of the semiconducting sulfide minerals in hydrothermal environments; the biothermoelectrochemistry characteristics of thermophilic/mesophilic microorganisms responding to thermoelectrons; the synergetic molecular mechanism of mineral thermoelectrons and microbial extracellular electron transfer driving carbon and sulfur element cycling; the theoretical model and environmental effects of mineral-microbial interactions in deep-sea hydrothermal habitats driving the energy transfer and conversion from thermoelectron to valent electron. This project is aimed to demonstrate thermoelectric properties of metal sulfide minerals in deep-sea hydrothermal habitats and their thermoelectron production and conversion mechanisms. Further, it will be revealed about the multi-element synergistic mechanisms among geothermy – sulfide mineral deposits – thermophilic/mesophilic microorganism – carbon and sulfur elements in typical deep-sea hydrothermal systems, as well as their environmental effects. This work will give scientific insights into the new approaches of microbial energy metabolism and carbon-sulfur element cycling in deep-sea hydrothermal habitats.
深海热液区是地球水圈、生物圈与深部岩石圈交互作用极为活跃的典型极端生境,本项目采用现代矿物学与环境微生物学交叉学科研究手段,围绕深海热液生境中金属硫化物半导体矿物协同某些嗜热/嗜温微生物发生热电子—价电子传递的分子机制及其驱动碳、硫元素转化的环境效应这一关键科学问题,重点开展热液区硫化物矿物半导体矿物学与热电输运特性研究、嗜热/嗜温微生物响应热电子的生物热电化学特征研究、矿物热电子协同微生物胞外电子传递驱动碳、硫元素循环的分子机制研究、深海热液生境矿物—微生物作用驱动热电子—价电子能量传递与转化的理论模型与环境效应研究,旨在查明深海热液生境中金属硫化物矿物半导体热电特性与热电子能量产生与转化机制,揭示典型深海热液系统中地热—硫化物矿物堆积体—嗜热、嗜温微生物—碳硫元素等多元耦合反应体系的作用机制与环境效应,为认识与理解深海热液生境中微生物能量代谢与碳硫元素循环的新途径提供科学依据。
深海热液区是地球水圈、生物圈与深部岩石圈交互作用极为活跃的典型极端生境。深海热液区的硫化物矿物是优良的天然窄禁带半导体矿物,发挥着关键但未被充分查明的热-电-光能量转换和物质转化作用。本项目重点围绕深海热液硫化物矿物多种形式能量转化特性及其协同微生物发生电子能量传递的分子机制,对深海热液硫化矿物的半导体性质、热-电-光能量转化特性、界面电子传递机制和半导体矿物协同微生物电子传递的理论模型进行深入研究。研究发现深海热电硫化物不仅具有优秀的热电输运性能,还具有良好的红外光-可见光转化的光学性质,具有将热能转化为可见光的潜能,揭示典型深海热液系统中硫化物矿物电子能量促进热能-电能-化学能-生物质能的多能量转化机制与环境效应,提出深海热液系统中地热—硫化物矿物堆积体—微生物—碳硫元素等多元耦合反应体系的理论模型。共发表学术论文7篇,其中SCI论文5篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
中国参与全球价值链的环境效应分析
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
基于图卷积网络的归纳式微博谣言检测新方法
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
雌激素受体结合gp130胞内结构域抑制IL-6/gp130炎症信号通路的抗动脉粥样硬化分子机制研究
小分子化合物通过抑制GSK-3β活性与Notch信号调控大鼠视网膜Müller细胞重编程的作用研究
脂肪干细胞外泌体miR-192-5p靶向抑制IL-17RA/LC3通路拮抗增生性瘢痕形成的机制研究
近海与河口透光层半导体矿物协同微生物驱动碳氮硫循环的机制研究
碳酸盐型盐湖碳硫元素循环的微生物驱动机制及适应机制
酸性矿山排水中微生物硫氧化驱动的地球元素循环过程及机制
热液区鳞脚螺铁硫化物矿化元素的富集机理:元素和硫同位素证据