As the "eyes" of unmanned surface vehicle (USV), the effective detection distance and service precision of detection equipment determine the integrity of many functions such as surveying, reconnaissance, navigation and obstacle avoidance. However, the mechanical vibration and surge disturbance caused of USV in the course of moving will lead to the deterioration of the performance of detection equipment. High-performance vibration control with both shock resistance and vibration suppression can effectively achieve the goal of anti-disturbance stabilization, which has long been an international academic frontier and research difficulty. This project focuses on two scientific issues: the generation mechanism of non-linear frequency-varying damping for high and low frequency synchronous disturbance suppression and the intelligent on-line adaptive control of giant electrorheological fluid frequency-varying damping. The characteristics of vibration source atlas and the mapping model of vibration under high sea conditions are established. The converse thought of high and low frequency synchronous disturbance suppression based on expected transmissibility is put forward. The material characteristics and theoretical model of giant electrorheological fluid are analyzed. The generation mechanism of giant electrorheological fluid damping is explored. A giant electrorheological fluid damper is designed. An intelligent on-line control strategy of frequency-varying damping for giant electrorheological fluids in different frequency and time periods is proposed. Finally, the anti-disturbance control of vibration radiation level attenuation and instantaneous impact energy dissipation of detection equipment is realized. This control strategy also provides a new method and technology for high precision and high resolution analysis of USV detection equipment.
探测装备作为无人艇工作的“眼睛”,其有效探测距离和服役精度决定了测绘、侦查、导航避障等诸多功能的完整性。但无人艇在行进过程中产生的机械振动以及高海况下的浪涌等强冲击干扰,会导致探测装备的性能劣化。兼顾抗冲击和振动抑制的高性能振动控制能够有效实现目标的抗扰増稳,此问题长期以来一直是国际学术前沿和研究难点。本项目围绕高低频同步扰动抑制非线性频变阻尼生成机理和巨电流变液频变阻尼智能在线自适应控制两个科学问题展开研究。建立高海况环境下的振源图谱特征与振动映射模型,提出基于期望传递率反求频变阻尼的高低频同步扰动抑制逆向思路,解析巨电流变液材料特性和理论模型,探寻巨电流变液阻尼生成机理,设计巨电流变液阻尼减振器,提出分频段、分时段的巨电流变液特性的频变阻尼智能在线控制策略,最终实现探测装备振动辐射等级衰减与瞬时冲击能量耗散的抗扰控制,为无人艇探测装备的高精度、高分辨率解析,提供新方法、新技术。
本项目针对无人艇的探测装备,综合考虑无人艇在行进过程中产生的机械振动以及高海况下的浪涌等强 冲击干扰,以兼顾抗冲击和振动抑制的高性能振动控制能够有效实现目标的抗扰増稳为目标。开展高海况下无人艇探测装备的振源信号采集及建立其特征图谱;提出一种具有频变阻尼特性的四参数隔振系统频变阻尼的概念;研究巨电流变液合成技术和制备方法,提出了极性分子取向合成键模型来解释巨电流变液的作用机理;建立频变阻尼的理论模型及动力学模型,并对其阻尼刚度等特征进行解析,验证巨电流变液阻尼器自身即存在频变阻尼特性;建立不同工作模式下的巨电流变液阻尼器模型,通过相关实验验证巨电流变液频变阻尼特性,验证了巨电流变液的可控特性;设计双向控制闭环环路,进行分频段、分时段的阻尼调整,设计最优控制算法,验证巨电流变液阻尼器自身即存在频变阻尼特性。综合考虑无人艇探测装备对抗扰控制系统在体积和重量方面的限制,优化巨电流变液阻尼器样机结构,搭建多自由度抗扰试验平台,开展复杂振源下的抗扰系统稳定性验证试验。实现探测装备振动辐射等级衰减与瞬时冲击能量耗散的抗扰控制,为无人艇探测装备的高精度、高分辨率解析,提供新方法、新技术。项目相关研究成果在Journal of Sound and Vibration,Mechanical Systems and Signal Processing,Science China,Smart Materials and Structures等机构学高水平期刊发表论文 7 篇;相关授权专利 7 项;学术专著1本。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
内点最大化与冗余点控制的小型无人机遥感图像配准
转录因子AML1-ETO与KLF4相互作用对CDKN1C基因的转录调控及对白血病细胞分化、凋亡的影响
基于刚度与阻尼在线调控的波浪中高速无人艇声隐身控制
自然能驱动无人艇的高抗扰控制方法研究
复杂海况下的海事无人艇路径规划研究
未知动态海况下无人水面艇的鲁棒协同路径跟踪研究