Searching for new electrode materials of Li-ion and rechargeable Li-air batteries, particularly for exploring high capacity and structure stability of the materials for the positive and the negative electrodes, is of high importance for R&D of new energy conversion and storage. Aiming at the difficult scientific problems of selected ion transportation, reversible charge/discharge, and safety of Li batteries, this program will focus on the design optimization of inorganic materials of rechargeable Li batteries, realizing the controlled synthesis and preparation of Mn-based oxides with high capacity and high catalytic activities due to multi-electron reactions, porous carbon (such as graphite/graphine/quinones with conjugated carbonyl compounds) modified Mn-based composite oxides, porous Mn (Al/Cu) alloys loaded LixM (M = Na, K, Mg, Ca) light alloys as well as their composites, revealing the effects of structure, composition, morphologies, sizes, valences, surface/interface, charge transfer, and matter transportation of electrode materials on the properties of energy conversion and storage, constructing the electrode materials and structures of Li batteries with high capacity and long cycling life, developing the system of high-performance Li-ion and Li-air batteries with independent intellectual property rights, and providing the research foundation and scientific basis for the development of materials and devices of new-energy conversion and storage.
寻求新型锂离子与可充锂空气电池电极材料,特别是探索提高正、负极材料的容量和结构稳定性等,对研发新型能量转化及储存材料具有十分重要的意义。项目针对新型锂电池领域的可控离子迁移与可逆充放电及安全性难点科学问题,通过二次锂电池无机材料的设计优化研究,实现在较温和条件下可控制备具有高容量或高催化活性的多电子反应Mn基氧化物、多孔碳(如石墨、石墨烯、醌类共轭型羰基化合物等)修饰Mn基复合材料、多孔锰(铝、铜)合金负载LixM (M = Na, K, Mg, Ca)轻质合金及碳复合材料,揭示电极材料结构、组成、形貌、尺寸、价态等变化,及材料表面/界面、电荷转移、物质输运等对能量转化与储存性能的影响规律,构筑高容量、长循环稳定性的新型锂电池电极材料与电极结构,研制具有自主知识产权的新型高性能锂离子电池与可充锂空气电池体系,为新型能源转化及储存材料与器件发展提供研究基础和科学依据。
电池可以实现化学能和电能的转化与储存,是推动新能源与可再生能源发展的重要体系,以电动汽车和电网蓄能为重大应用背景的下一代锂电池,其关键性能指标之一是高能量密度和快速放电能力。锰基电极材料具有资源丰富、价格低廉、无毒害等优点,在能量转化/存储领域(如锂离子电池、超级电容器、金属空气电池、燃料电池等)表现出很高的电化学活性,但还需在多电子反应的高容量电极材料、电极材料-电解液表/界面结构优化、Li/Li+可逆转化中的能量有效利用等方面深入系统研究。通过二次锂电池材料的设计优化,项目合成了LiNi0.5Mn1.5O4 多孔纳米棒、0.2Li2MnO3•0.8LiNi0.5Mn0.5O2纳米棒、MnCO3@rGO 复合物、LiNi0.5Mn1.5O4•LiNi1/3Co1/3Mn1/3O2 复合物、Li2TiO3包覆的LiMO2(M=Ni,Co,Mn)纳米带等锰基电极材料,以及杯[4]醌、柱[5]醌、苯醌等醌类,Li4C8H2O6 纳米带、氧碳化合物等有机电极材料用于新型高性能锂离子电池研究,实现了多电子反应;将高活性稳定型多孔Pt/CaMnO3、高活性多孔CaMnO3、非化学计量的钙钛矿CaMnO3-δ、ε-MnO2@Ni纳米复合物、α-MnO2超长纳米线及Co3O4@MnO2/Ni纳米复合物用于可充锂空气电池体系研究,提高了容量保持率和电池的循环稳定性;此外,项目还开展了水系锌电池、钠离子电池、Li/Na-CO2等新型高容量电池体系的研究。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于多模态信息特征融合的犯罪预测算法研究
基于二维材料的自旋-轨道矩研究进展
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
动物响应亚磁场的生化和分子机制
新一代锂电池硅基负电极材料的优化和制备方法
基于富锂锰基正极材料的全固态锂电池设计及晶格氧损失调控
多电子交换高容量电极活性材料的研究
二次锂电池新型正极材料—多硫化碳炔