The icing makes the aerodynamic performance of blade decrease and the structural fatigue life shorten, which severely affects the utilization rate of wind energy and the operation safety of wind turbine. The project puts forward a new concept that the optimization design of blunt trailing-edge airfoil is used to prevent the ice from affecting the blade. The main research contents of the project involve: (1) The profile representation of blunt trailing-edge airfoil is established, and then is combined with the shape functions describing the distribution characteristics of chord length and twist angle to form the parametric representation of horizontal axis wind turbine blade. (2) The icing model of rotational blade is built by analyzing the air flow field, the water droplet collection efficiency, the heat and mass transfer and the ice shape, which considers the rotation effect of wind turbine. (3) The shape curve fitting of rime ice and glaze ice is carried out, and the parametric control equations of blunt trailing-edge airfoil with icing are obtained. The multi-objective model is constructed with the maximum lift-drag ratios of several airfoils in root and middle parts of blade under smooth and icing conditions as the design object, and a new anti-icing optimization design method of blunt trailing-edge airfoil is presented. (4) The parameterized icing models of composite blade are established by using the airfoils before and after the blunt trailing-edge optimization. The aerodynamic performance, the flow field characteristics and the icing sensitivity are analyzed, and the static and dynamic response are investigated through the numerical calculation and the structural dynamics experiment using the clay to simulate the ice shape. The project tries to provide a new method for innovative design and anti-icing technology of wind turbine blade. The research of this project is of important theoretical significance and engineering application value.
结冰导致叶片的气动性能下降和结构疲劳寿命缩短,严重影响风力机的风能利用率和运行安全。本项目提出通过钝尾缘翼型优化设计进行叶片防冰的新概念,主要研究内容为:(1)建立钝尾缘翼型型线表征式,并结合弦长和扭角的分布特性形函数参数化表达水平轴风力机叶片;(2)计及风轮旋转效应进行空气流场、水滴收集率、传热传质和冰形的计算,构建旋转叶片的结冰模型;(3)利用曲线拟合描述霜冰和明冰的冰形特征,建立结冰钝尾缘翼型型线控制方程组,构建以光滑和结冰时叶片根、中部多个位置翼型的升阻比最大为设计目标的多目标模型,提出钝尾缘翼型防冰优化设计新方法;(4)采用钝尾缘优化前后的翼型建立复合材料叶片结冰参数化模型,进行气动性能、流场特性以及结冰敏感性分析,并利用数值计算和粘土模拟冰形的结构动力学实验研究静、动态响应。项目研究为风力机叶片的创新设计和防冰技术开发提供了新思路,具有重要的理论意义和工程应用价值。
结冰导致叶片的气动性能下降和结构疲劳寿命缩短,严重影响风力机的风能利用率和运行安全。完成的主要研究内容:(1)利用翼型型线集成理论、B样条函数和指定位置坐标平移形成凸台建立粗糙钝尾缘翼型型线控制方程组,以升力系数和升阻比最大为设计目标,形状函数系数、B样条参数以及钝尾缘厚度和其分配比为设计变量,采用粒子群算法耦合XFOIL软件进行叶片表面粗糙时钝尾缘翼型的多目标优化,并研究气动系数、压力分布和流场特性以及粗糙度敏感性。(2)采用线性插值算法进行以等距离、等角度为步长的霜冰曲线拟合,利用骨干粒子群优化算法耦合GAMBIT和FLUENT软件进行霜冰条件下钝尾缘翼型的多目标优化;叶展多个截面冰形关键点分别映射在摆振与挥舞面内,采用多项式拟合得到水平轴风力机叶片的霜冰冰形,分析霜冰尖、钝尾缘叶片的扭矩、输出功率、压力分布、流场特性等。(3)应用CFD方法和BP网络分别计算翼型干净和明冰时的气动系数,利用社会学习修正QPSO算法的非最优粒子势阱中心更新方式、Lévy飞行与贪婪算法结合更新最优粒子位置,以钝尾缘型线控制参数为设计变量、明冰前后的升力系数和升阻比最大为设计目标进行优化并数值研究明冰翼型的气动性能和流场特性;以额定工况下风能利用系数最大为设计目标,采用改进的QPSO算法和叶素动量理论优化扭角分布控制参数,分析明冰条件下尖、钝尾缘叶片的输出特性。(4)采用Camanho损伤准则和薄膜特性新层分别建立层内纤维失效和层间分层的层合板模型,利用模态分析获得固有频率、网格节点模态位移;通过相邻预浸料间预埋聚四氟乙烯薄膜制备层间损伤层合板并进行力锤激励实验,采用动态信号采集分析系统获得各测点的模态位移并与仿真结果比较;应用差分法得到曲面的高斯曲率,并用损伤前后高斯曲率差的平方检测层内、层间损伤。研究结果为风力机叶片的创新设计和防冰技术开发提供新思路,具有重要的理论意义和工程应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
钢筋混凝土带翼缘剪力墙破坏机理研究
滚动直线导轨副静刚度试验装置设计
一种改进的多目标正余弦优化算法
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
大型钝尾缘层流叶片水平轴风力机风能吸收机理研究
水平轴风力机旋转叶片结冰风洞实验相似准则与结冰特性研究
低温结冰环境下水平轴风力机叶片设计理论及颤振机理研究
尾缘涡街作用下三维流动对钝尾缘叶片气动载荷影响研究