Recently, microtubes formed by the self-rolling of Si-based strained semiconductor membranes have shown the wide application prospects in optoelectronic field. With the rapid development of silicon-based micro/nano photonics, the development of novel Si-based active integrated photonic devices, especially low-threshold nanoscale lasers, which are based on these semiconductor microtubes, has played an important role in building silicon-based micro/nano optical interconnect chip. In this project, important breakthroughs will be achieved in high-performance III-V/Si metamorphic growth. And then, using III-V strained membranes with direct-bandgap which have been metamorphically grown on single-crystal Si or SOI substrate, innovative researches on Si-based III-V self rolled-up microtubes and corresponding photonic devices will be carried out. Our research work will focus on the following aspects. (1) Highly-effective and controllable fabrication of Si-based III-V self rolled-up microtubes and their arrays will be realized through the comprehensive investigations and innovations of tube fabrication method and processes; (2) Fabrication of Si-based III-V quantum dot microtube lasers with very low threshold will be realized through the insertion of self-assembled quantum dot gain media in the wall of microtubes. The research results achieved in this project will be important not only for the development of Si-based photonic integrated technologies and Si-based micro/nano optical interconnects technologies, but also for the fabrication of Si-based III-V micro/nano photonic devices.
近年来,硅基应变半导体薄膜自卷曲形成的微米管已经在光电子领域展现出广阔的应用前景。随着硅基微纳光子学的快速发展,研制基于此类半导体自卷曲微米管的新型硅基有源光子集成器件(特别是低阈值纳米尺度激光器),对于构建满足高密、高速率应用的硅基微纳光子互连芯片尤为重要。本项目拟在高质量GaAs/Si异变外延生长方面取得重要突破,进而利用单晶Si或SOI衬底上异变外延生长的直接带隙III-V族应变薄膜,开展硅基III-V族自卷曲微米管及相关单片集成硅基光源的创新研究。本项目研究工作重点集中在:(1)通过制管方法与工艺的深入探索和创新,实现硅基III-V族自卷曲微米管及其阵列的高效、可控制备;(2)通过在管壁中插入自组织量子点增益介质,实现低阈值硅基III-V族量子点微米管激光器。本项目研究成果将对硅基光子集成技术与硅基微纳光子互连技术的发展、新型硅基III-V族微纳光子器件的研制具有非常重要的意义。
近年来,基于应变薄膜释放应力自卷曲形成微米管及相应的新颖器件探索倍受关注。在此背景下,本项目重点开展基于III-V族低维纳异质结构(自组织量子点为主)与III-V族半导体自卷曲技术的微米管光学微腔、微腔激光器等微纳光子器件的前沿研究,深化国内外实质性合作,着力突破若干材料、结构、器件及关键制备工艺上的关键瓶颈,最终取得了重要的系列研究成果:(1)在MOCVD生长多层自组织量子点上取得突破,成功制备出了可室温连续运转的GaAs基InAs量子点边发射激光器;(2)将Si基异变GaAs的位错密度降至(10^6)/cm^2量级,进一步提升了GaAs/Si异变外延质量;(3)基于GaAs/Si异变MOCVD外延,制备出了具有优良光学特性的Si基InGaAs/GaAs微米管及其阵列、Si基多层InAs量子点有源区;(4)在InGaAs/GaAs微米管的管壁中分别嵌入了单量子阱、单层和双层InAs自组织量子点,借助转移至Si基SiO衬底的方式获得了量子点微米管光学微腔;(5)在量子点微米管中引入了AlGaAs上下限制层对载流子进行良好限制,进而利用微米管与衬底悬空在GaAs衬底上室温下获得了量子点微米管光学微腔,完成了液体传感验证并成功制备出了室温连续运转的GaAs基量子点微米管光泵激光器。本项目取得的研究成果对研制基于自卷曲技术的III-V族半导体微纳光子器件(特别是微腔激光器),以及借助自卷曲微米管推动微纳光子集成、微纳光子互连、微纳传感的发展都具有非常重要的意义。本项目执行期间,共发表SCI 论文13篇,会议论文15篇,授权发明专利4项,申请发明专利4项;毕业研究生11人(博士生1人)。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
论大数据环境对情报学发展的影响
内点最大化与冗余点控制的小型无人机遥感图像配准
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
氯盐环境下钢筋混凝土梁的黏结试验研究
硅基III-V族混合集成激光器的关键特性研究
单片集成硅基量子点激光器的研究
单片集成硅基灵活栅格模式波长选择光开关研究
硅基太赫兹单片集成器件的设计与建模技术