Patterning of nano-films is the foundation of modern micro-optoelectronics industry. In order to meet the demand for mass markets, there is an urgent need for developing a facile and high resolution patterning technique, which is also a current research focus. However, the previous fabrication methods can not meet all the requirements. To address the above necessities, this project proposes using the strong localized strain during the facile polymer necking process to precisely control the fragmentation of the nano-films,thus forming the pattern on the nano-films. In the previous work, we demonstrated the controlled fragmentation of four single crystal nano-films. However, the fragmentation mechanism and the universality of the necking process have not been established. We will carry out the research with the following aspects: (1) Using the in situ micro Raman and Photoluminescence technique to reveal the fragmentation mechanism of the nano-films. (2) Analyzing the effect of the stiffness of the substrate materials and consolidation process on the interfacial shear strength, thus enable the regulation of the fracture size. (3) Analyzing the effect of grain boundary defects in graphene, deposition rate and thickness of the metal nano-films on the controlled fragmentation. (4) We propose to fabricate high-performance sensor and laser by utilizing the abundant active edge sites of the nano-films. By carrying out this research work, we hope to provide new thoughts for the patterning of nano-films and the fabrication of high-performance sensor and laser.
纳米薄膜的图案化是现代微光电工业的基础。为了适应大规模市场需求,发展一种简便且高精度的纳米薄膜图案化技术是迫切需要的,也是目前研究的热点。然而以往的制备方法总是不能够同时满足以上条件。为满足上述需求,本项目提出利用简易的聚合物颈缩工艺中的强局域应变精确控制纳米薄膜的断裂,从而形成图案化的纳米薄膜。前期工作中,我们实现了四种单晶纳米薄膜的可控断裂,但断裂机制、颈缩工艺的普适性尚未明确。本项目拟研究以下内容:(1)采用原位微区拉曼及光致发光技术揭示纳米薄膜的可控断裂机制;(2)分析基底材料的刚度及热固化工艺条件对界面剪切强度的影响,实现纳米薄膜断裂尺寸的调控;(3)分析多晶石墨烯晶界缺陷、金属纳米薄膜沉积速率及厚度对实现可控断裂的影响;(4)利用图案化纳米薄膜丰富的活性边界制备高性能的传感器及激光器。通过本项目的开展,希望为纳米薄膜图案化及高性能的传感器和激光器提供新的思路。
纳米薄膜的图案化是现代微光电工业的基础。为了适应大规模市场需求,发展一种简便且高精度的纳米薄膜图案化技术是迫切需要的,也是目前研究的热点。然而以往的制备方法总是不能够同时满足以上条件。本项目提出了利用简易的聚合物颈缩工艺中的强局域应变精确控制纳米薄膜的断裂,从而形成图案化的纳米薄膜。主要研究内容包括以下四点:(1)采用原位微区拉曼及光致发光技术揭示纳米薄膜的可控断裂机制;(2)分析基底材料的刚度及热固化工艺条件对界面剪切强度的影响,实现纳米薄膜断裂尺寸的调控;(3)分析多晶石墨烯晶界缺陷、金属纳米薄膜沉积速率及厚度对实现可控断裂的影响;(4)利用图案化纳米薄膜丰富的活性边界制备高性能的传感器及激光器。重要结果包括:(1)首次实现了多晶石墨烯的可控断裂技术并获得了高性能的PH传感器,文章发表于CELL姊妹刊Matter上。(2)发展了一种改进的shear-lag理论,非常好的解释了纳米薄膜的可控断裂,文章发表于固体力学顶刊journal of the mechanics and physics of solids上。(3)除此之外,我们基于纳米薄膜制备了高性能的气体/压力传感器,高性能SERS传感以及X射线探测器等,共计发表SCI文章11篇,包括Nano energy,Advanced Optical Materials, ACS Applied Materials& Interfaces等杂志,申请发明专利7项,出版专著1个章节。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
钢筋混凝土带翼缘剪力墙破坏机理研究
响应性图案化材料的制备及其应用探索
基于材料表面图案化技术探索干细胞的手性
纳米硅薄膜应用探索性研究
纳米级液晶聚合物及共混物超薄膜连续制备工艺和性能