As the mechatronics functional unit of high-speed cutting, the dynamic performance and running accuracy of the motorized spindle are the key factors to determine the machining quality and efficiency, however, some obstacles currently affect its development, especially separate to use electromechanical information, difficult to extract dynamic information, and scant to combine quality evaluation. In view of these problems, this research project is focused on the detection and evaluation methods of dynamic operation quality with the combined electromechanical information of the high-speed & high-precision motorized spindle. Firstly, the coupling model of electromechanical system between the three-phase stator current excitation and the rotary mechanical components response of the motorized spindle is constructed, which is used to reveal the role of electromechanical coupling characteristics influence on dynamic performance of the motorized spindle. Secondly, the orthogonal centering measurement and dynamic decoupling methods based on four-point method of rotary accuracy of the high-speed & high-precision motorized spindle, the feature vector demodulation and state identification methods of electromechanical information based on the three-phase current signal of the high-speed & high-precision motorized spindle, both methods are used to achieve the quantitative characterization of rotary accuracy and the current characteristics identification of electromechanical information, respectively. Finally, the dynamic multi-source information from the performance and accuracy detections are integrated to realize the consistency evaluation for the comprehensive running quality of the high-speed & high-precision motorized spindle. Through the research of this project, we hope to be able to provide a set of systematic technology of dynamic performance detection and operation quality evaluation, which could be very helpful to improve the systematic design and the manufacturing process optimization of the high-speed & high-precision motorized spindle.
电主轴作为实现高速切削的机电一体化功能部件,其动态性能与运行精度成为决定加工品质与效率的关键因素。针对高速精密电主轴机电信息分离应用、动态特性获取困难、品质评价融合不足的问题,本项目重点研究基于机电信息融合的高速精密电主轴动态运行品质检测与评价方法,构建由三相定子电流激励与回转部件机械响应之间的机电系统耦合作用模型,揭示高速精密电主轴机电特性对其动态运行性能的影响规律;研究基于四点法的高速精密电主轴动态回转精度正交定心测量与解耦分离方法和基于三相电流信号的电主轴机电信息空间/矢量解调及特征融合表征与识别方法,实现对高速精密电主轴运行回转精度的量化表征和机电动态特性的电流特征辨识;最后将动态多源机电检测信息有机融合,实现对高速精密电主轴综合品质的一致性评价。通过本项目的研究,力求为高速精密电主轴提供一套动态性能检测与运行品质评价的系统技术,并有效支撑高速精密电主轴系统设计改进与制造工艺优化。
高速精密电主轴作为现代高速加工技术的核心部件之一,广泛应用于各种数控加工中心和高性能机床。由于电主轴作为实现高速切削的机电一体化功能部件,其动态性能与运行精度成为决定加工品质与效率的关键因素。因此,本项目以检测高速精密电主轴动态运行性能关联信息为目标,研究基于机电信息融合的高速精密电主轴动态运行品质检测与评价方法。根据“运行精度检测——动态性能测试——动态运行品质检测与评价”的研究主线,重点研究了高速精密电主轴机电关联作用模型、电主轴动态回转误差测量与误差分离方法、基于三相电流信号的电主轴运行状态识别与检测方法,实现了基于机电信息融合的高速精密电主轴动态运行品质的一致性评估。. 在高速精密电主轴机电关联作用模型研究中,给出了高速精密电主轴动态机电关联作用模型和机电驱动特性与系统动态响应、运行精度关系,进一步描述机电耦合系统瞬态过程中的能量转换和信息传递规律。对于回转误差的高精度测量来说,提出了基于四点法的电主轴动态回转误差测量与误差分离方法,并在此基础上给出了基于弦线截交关系的回转误差在线动态评价建模方法,这可以揭示转子动态机电特性与运行精度的广义关联关系。对于基于三相电流信号的电主轴运行状态识别与检测方法研究,提出了基于线性搜索随机共振的电流弱特征信息提取与识别定性分析方法,结合电机内部的电磁信息,研究了基于多频率特征耦合的电主轴机电关联信息融合表征与识别方法。最后,利用基于三相电流融合信息的高速精密电主轴健康状态评估方法和动态运行精度评估方法,建立了机电关联信息融合的高速精密电主轴动态运行品质的一致性评估。. 本研究的开展将进一步加强以提高高速精密电主轴运行稳定性为目标的运行性能综合检测评价方法研究,可为精密数控机床、高速转子等高速精密回转装置的动态性能测试提供重要的理论与技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
涡度相关技术及其在陆地生态系统通量研究中的应用
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
基于视/听信息融合的复杂机电系统运行状态监测原理与方法研究
数控机床高速电主轴系统复杂动力学行为与运行品质研究
基于多源信息融合与深度学习的柚果内部品质无损检测方法研究
高速电主轴机电耦合动力学分析及仿真与实验研究