With a huge demand for energy in modern society, recycling waste energy has become an important approach to energy (re-)generation. It is of great significance to develop and study an effective waste heat / kinetic energy-harvesting system to alleviate the energy crisis. This proposal aims to explore a new energy-harvesting material based on nanoporous materials which could efficiently harvest the waste heat or kinetic energy thanks to the electric double layer mechanism. A new energy-harvesting system is to be developed that can convert waste heat or kinetic energy into electric energy. A systematic study of the energy-harvesting mechanism will be conducted. Both multi-scale simulation and macroscopical experiments will be employed to study the energy conversion process from thermal energy or kinetic energy to electric energy. Besides, the energy-conversion mechanism at the nanoscale solid-liquid interface will be explored in detail. Finally, we can obtain a systematic relationship among the parameters of the nanoporous material, heat energy, kinetic energy, ionic liquid and the performance of the energy-harvesting system. In the next step, systematic optimization study will be performed for the structure of the nanoporous material and the energy-harvesting system, through multi-scale analysis. Therefore, we can develop the most efficient energy-harvesting system according to the practical applications. The new energy-harvesting system has the advantages of cleanness, safety, pollution-free, and renewability, providing a new technology for energy (re-)generation.
面对人类对能源的大量需求,回收生活中的废能已成为一种重要的能源产生方式,研究一种高效的废热/动能的能量回收体系,对缓解能源压力具有重要意义。本项目基于双电层理论研发出一种可高效地回收废热/动能的纳米多孔俘能材料,并建立一套可将废热/动能转换为电能的新型能量回收体系,且对其俘能机理展开系统研究。结合多尺度模拟和宏观实验研究热/动-电的能量转换过程,获得纳米尺度固液接触界面上热/动-电的能量转换机理,并分析纳米多孔俘能材料的各个表征参数和热能、动能、离子溶液的各个参数对俘能系统性能的影响规律。根据多尺度分析,对纳米多孔俘能材料和废热/动能的俘能系统的结构进行优化设计,获得俘能系统的各个参数对其性能的影响规律,并根据不同的使用条件设计出最高效的能量俘获系统结构。本项目中的俘能系统兼具清洁、安全、无污染、可再生等优异特性,为新能源的研发提供了一种新的思路。
为了缓解环境问题带来的压力以及满足人类对清洁能源的需求,高效回收废能作为一种绿色可持续的能源产生方式十分重要。基于此,本课题研发了一种轻质和高效的,低品味热/动能回收俘能纳米多孔材料和俘能系统,对缓解能源压力具有重要意义。项目开展了以下研究:(1)在纳米尺度上,采用分子动力学模拟,阐述了固液接触界面上热/动能-电能的转换机理,研究了热能参数(温度变化量)和动能参数(振动频率、流速)、离子溶液的浓度和种类对能量转换效率、输出电压、内阻等的影响规律,建立了系统的微纳米力学能量转换理论体系;(2)基于现有的纳米多孔材料制作技术,结合微纳米力学能量转换机理,开展了俘能纳米多孔材料研发的实验研究,分析了纳米多孔材料的参数(如比表面积、孔隙率、孔径分布、几何形状、亲疏水性、柔韧性等)对能量转换效率、输出电压、内阻等的影响规律,并优化了纳米多孔材料的结构,研发出高效的纳米多孔俘能材料;(3)利用上述俘能纳米多孔材料,结合微纳米力学能量转换机理,开展了俘获热/动能的实验研究,开发了俘获热/动能的俘能系统;(4)结合多尺度模拟、理论分析和宏观实验,优化设计高效俘获热/动能系统的能量转换系统结构。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
特斯拉涡轮机运行性能研究综述
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
中国参与全球价值链的环境效应分析
多稳态压电俘能系统的力电耦合机理研究
基于电纺纳米纤维基膜的IPMC高效俘能机制与调控
路面振动压电俘能系统的动力学特性及俘能机理研究
考虑挠曲电和表面效应的压电纳米俘能器力电耦合特性研究