Understanding the hydrodynamics and mass transfer on particle swarms scale and establishing the mathematic model coupling the turbulence two-phase flow with transient mass transfer on the industrial macro-scale, are necessary and effective for solving the scale-up effect and realizing the design, optimization and regulation of the unit operation equipment. Nowadays direct numerical simulation (DNS) has become a powerful tool for studying the multiphase flow on meso-scale, but it demands an overwhelming computational load and cannot be feasible for engineering applications and the characteristics of drop swarms are not fully understood. Therefore, this project will concentrate on the key scientific issue, “the dynamic topological change of drops in a drop swarm and the mechanisms in enhancing the interphase mass transfer”, and combine the level set method and the semi-Lagrangian scheme to develop an efficient, accurate and stable DNS technique for the coupled two-phase dispersing/coalescing flow and interphase mass transfer. The validation experiments will be carried out with the particle image velocimetry (PIV) and holographic interferometry (HI) to investigate the typical processes: the coalescence of two drops and the breakup of a single drop. The coalescence and breakage of drops and their influence on drop mass transfer through disturbing and destructing the mass transfer boundary layer around an individual drop will be focused with DNS and experimental verification. The reliable, high-precision, low-computational-load and high-efficiency DNS algorithm will be applied eventually to conduct extensive numerical experiments to correlate drag model and mass transfer enhancement model in drop swarms for the numerical simulation of liquid-liquid system on macro-scale, to provide theoretical basis and engineering tool for development, design and optimization of liquid-liquid reactors and separation equipment.
认识液滴群动力学特性和传质规律,与湍流及瞬态传质耦合建立宏观尺度数学模型,是解决放大效应,实现设备设计、优化和调控的有效途径。目前,直接数值模拟(DNS)已成为研究介尺度多相流的有力工具,但其计算量大难以工程应用;对液滴群特性认识不足。为此,本项目围绕“液滴聚并和破碎行为及其增强相间传质的机理”这一关键科学问题,综合Level Set和Semi-Lagrangian方法构建高效准确稳定的适于液滴动态拓扑变化的液液两相流和传质耦合的DNS新方法。通过粒子图像测速仪和全息干涉仪观测经典的两液滴聚并和单液滴破碎过程。结合DNS和实验验证,重点研究液滴聚并和破碎行为及其扰动和破坏传质边界层而强化相间传质的现象。最终以可靠的高精度、低计算负荷和高效率的DNS算法进行数值实验,归纳可嵌入液液体系宏观尺度数值模拟的液滴群尺度阻力模型和传质增强模型,为模拟工业液液反应器及分离设备提供基础工具和工程数据。
在石油、化工、冶金和制药行业中,液液非均相反应器及分离设备的生产效率往往依赖于相界面积和反应物或溶质的相际传递效率。因此,认识液滴群动力学特性和传质规律,将湍流及瞬态传质耦合建立宏观尺度数学模型,是解决放大效应,实现设备设计、优化和调控的有效途径。液液体系由于Marangoni效应以及液滴聚并和破碎等复杂情况下,相间传质机制不明。继而,在反应器设计和放大过程中,对传质系数的估算不够准确。为此,本项目围绕“液滴聚并和破碎行为及其增强相间传质的机理”这一关键科学问题,开发高效稳定的DNS新算法,包括LS-SL算法,边界元方法和VOF方法耦合动态加密网格,进行颗粒行为对传质效率的影响机制研究。另外,采用光学实验对传质过程进行了观测,取得了可用于验证数值模拟的关键数据。主要内容和结论包括:1)在线性以及非线性拉伸流场(包括单轴拉伸和双轴拉伸)中研究变形液滴或者椭球液滴的内部传递控制、外部传递控制以及内外耦合传递控制的传质过程,数值模拟Pe、Ca、λ、K、m等主要参数对传质过程的影响,并建立了经验关联式。2)在OpenFOAM平台上进行二次开发,编写了跨尺度两相流和传质数学模型,在反应器尺度上对分散相的界面进行准确地描述,并以此为基础进行传质系数的计算。3)采用数字全息激光干涉测量和PLIF对伴随Marangoni效应的液液两相进行了传质系数的测量,得到了瞬态的局部浓度场数据。Marangoni效应的发生与Re和Ma有关,且通过化学反应促进界面传递后,Marangoni效应的强度减弱。本项目为反应器的数值模拟提供了可参考的传质系数关联模型,为构建液液两相流体力学特性和传质特性的本构关系提供工程数据基础,以便实现颗粒、颗粒群和宏观设备尺度耦合的数值模拟,可应用于指导工业多相反应器和分离设备的问题诊断和优化改造,有望取得显著的经济和社会效益。
{{i.achievement_title}}
数据更新时间:2023-05-31
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
钢筋混凝土带翼缘剪力墙破坏机理研究
城市轨道交通车站火灾情况下客流疏散能力评价
双吸离心泵压力脉动特性数值模拟及试验研究
变形液滴萃取传质中Marangoni效应的三维数值模拟和实验研究
液滴振荡变形及其与动态接触角耦合机理
液晶液滴铺展和浸润的微观建模与数值模拟
颗粒/颗粒群流动和传热的全尺度直接数值模拟