Ammonia borane has been considered as a promising candidate material for hydrogen generation due to its very large hydrogen content. The temperature pyrolysis from ammonia borane will be lower and the rate of hydrolysis will be faster with proper catalysts. Although noble metal catalysts show higher catalytic activity, they are more expensive. The non-noble metal Ni catalysts are low cost, especially when nanoparticles with sizes below 2 nm will exhibit remarkable catalytic properties due to their precise and ultrafine dimensions. We will use inverse microemulsion method to controllable synthsize the ultrafine nickel nanoparticles catalysts. The catalysts will be characterized using X-ray diffraction, atomic force microscopy, electron microscopy, EDS and BET nitrogen adsorption measurements and so on. The phase composition, crystal structure and crystallite size of the catalysts will be studied. We will do research on how the factors influence the catalysis. It will point out that the structure characteristic of the high efficiency catalyst, and establish the relationship of the catalysis and the physical propertiethes of the materials. On the basis of the detection of the intermediate and the simulation of the reaction, it will infer the mechanism of the hydrogen evolution reaction, including pyrolysis and hydrolysis. These subjects aim to controllable synthsize the ultrafine nickel nanoparticles and reveal the key effect of the catalytic performance. It is significant to study for the hydrogen generation of ammonia borane.
氨硼烷因储氢高,而成为制氢研究热点之一。催化剂可以显著降低氨硼烷热解温度,提高其水解放氢速率,是影响其放氢的关键因素。然而,催化性能较好的催化剂多为贵金属或贵金属复合物。非贵金属Ni由于具有成本低以及高效的催化活性而备受关注,尤其是尺寸处于2 nm以下的超细纳米粒子。本项目以此为切入点,采用反相微乳液法可控合成2 nm以下超细纳米Ni材料;采用X射线衍射、原子力显微镜、电镜、能谱、BET吸附等实验检测手段,研究催化材料的物相组成、微观结构、晶粒尺寸等因素对氨硼烷放氢性能的影响,建立材料的微观表面性质与催化性能之间的关联;并且通过催化反应中间产物检测与理论计算相结合,推断氨硼烷热解、水解放氢反应的机理,进而从根本上提出高效催化剂应具备的结构特征。本项目旨在可控制备超细纳米Ni材料,揭示影响催化剂性能的关键因素,对氨硼烷放氢研究有重要意义。
氨硼烷因储氢量高,而成为制氢研究热点之一。催化剂可以显著降低氨硼烷热解温度,提高其水解放氢速率,是影响其放氢的关键因素。然而,催化性能较好的催化剂多为贵金属或贵金属复合物。非贵金属催化剂由于具有成本低以及高效的催化活性而备受关注,尤其是超细纳米粒子催化剂。本项目自获资助以来一直开展非贵金属超细纳米催化剂的制备及催化性能研究,在不断探索其制备方法的过程中,采用反相微乳液法、化学沉积法等制备了超细纳米Ni等非贵金属催化材料;通过X-射线衍射(XRD),电感耦合等离子发射光谱-质谱(ICP-MS),扫描电子显微镜(SEM),透射电子显微镜(TEM),原子力显微镜(AFM),X-射线光电子能谱(XPS)以及拉曼光谱(Raman)等等实验检测手段,研究催化材料观表面性质与催化性能之间的关联;阐述了高效催化剂应具备的结构特征。相关研究成果以发表SCI检索论文10篇,省级论文1篇,其中,制备的非贵金属催化剂材料在催化氨硼烷制氢体系中,其最高产氢速率高达13321.1 mL min-1 g-1,对应的反应表观活化能为32.2 kJ mol-1。申请发明专利4项,授权并转化2项,与目前市场上的同类产品相比,已授权技术提供的催化剂用于制氢系统的最大特点是随用随产、随产随用,无积存气体,实现零压产氢的国际领先技术。此外,已授权技术提供的催化剂应用于制氢系统主要分为燃料型和发电型两种产品,在野炊、登山、野外便携式电源、无人机电源、仿生鱼电源供氢方面具有巨大的市场应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
农超对接模式中利益分配问题研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
心脏干细胞外泌体源circHIPK3调控miR-29a/VEGFA促进内皮祖细胞血管新生机制的研究
Fe、Co、Ni超细纳米结构制备与催化放氢研究
二元Ni基非贵金属纳米材料催化氨硼烷制氢性能研究
氮-掺杂三维多孔石墨烯担载超细纳米金属Co、Ni的制备及催化LiBH4放氢性能
CuM掺杂+负载TiO2纳米管光催化氨硼烷水解放氢性能研究