The development of integrated circuit which based on metal interconnects has been faced with many challenges. For example, integration density become saturated、transmission bandwidth is limited、 power consumption and signal crosstalk is large、encapsulation is getting more and more difficult and so on. Optical interconnection for all-optical integration has the incomparable advantage in transmission bandwidth、energy consumption and reliability with metallic interconnects. However, high threading dislocation density in the material is the.key problem in the research area of Si-based optoelectronic integration technology, especially in Si-based heteroepitaxy semiconductor laser, which restricts the development of all-optical integration. To solve this problem, in this project, we study large mismatch Si-based InP quantum dot material at 1.55μm band. we propose three technical means, including gradient InGaAs buffer layer which Contains high component In to realize the transition from Si to InP material system; quantum dot dislocation filter layer to reduce threading dislocation.density; p-doped and tunnel injection quantum dot laser active region to get High resistance to dislocation respectively. With the help of these techniques, the threading dislocation density is expected to be 1E4~1E5/cm2,and root mean square roughness lower than 1nm,FHWM of XRD rocking curve lower than 200arc sec. we will fabricate high performance laser devices to Provide technical support for the all-optical integration.
基于金属线互连的集成电路的发展面临:集成密度趋于饱和、传输带宽有限、功耗大、信号串扰大、封装越来越困难等一系列问题。面向全光集成的光互连在传输带宽、能耗、可靠性等诸多方面拥有金属线互连无法比拟的优势。但是,Si基光电集成技术的发展,尤其是Si基异质外延半导体激光器的研究面临材料中穿线位错密度过高的关键科学问题,限制了全光集成的发展。为解决这一问题,本项目对Si基大失配1.55μm波段InP量子点材料高质量外延生长展开研究。提出渐变高In组分InGaAs缓冲层以解决从Si到InP材料体系的过渡问题;量子点位错过滤层以解决穿线位错密度过高问题;P型掺杂隧穿注入InAs量子点源区以提高材料对位错的抵抗力。实现外延材料中穿线位错密度降至1E4~1E5/cm2量级,表面均方根粗糙度低于1nm,XRD摇摆曲线InP材料体系半高宽低于200arc sec并制作高性能激光器器件,为全光集成提供技术支撑。
本项目以全光集成等应用急需的Si基激光器为研究目标,针对目前该领域研究中存在的因晶格失配大而导致的位错密度过高,高质量Si基量子阱激光材料难以制备的问题,提出采用量子点位错过滤层,结合渐变高In组分InGaAs缓冲层技术,设计源区为P型掺杂隧穿注入InAs量子点结构,利用MOCVD设备在高质量GaAs/Ge/Si衬底上生长低位错密度1.55μm波段半导体量子点材料,对量子点材料的结晶质量、缺陷密度、光荧光特性等进行评价,并进行激光器研制和特性研究。目前,本项目已经按照研究计划完成了所有研究内容,所有指标达到预期指标要求。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
内点最大化与冗余点控制的小型无人机遥感图像配准
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
氯盐环境下钢筋混凝土梁的黏结试验研究
日本血吸虫感染肝肉芽肿中lncRNA AK165053对巨噬细胞ROR alpha通路的调控机制研究
1.55微米InP基InGaAsP量子阱-InAs量子点耦合激光器研究
1.55微米波段全Si波导型光电探测器的研究
InP基2μm波段分布反馈量子阱激光器制备研究
基于MOCVD高性能1.55微米InAs/InP自组织量子点材料生长及激光器应用研究