Recently, chiral phosphoric-acid-based Metal-organic frameworks (MOFs) as heterogeneous catalysts have been considered that it has potential applications in asymmetric hydrogenation. However, it is subjected to the complexity of microstructure and the uncertainty of the asymmetric mechanism, which seriously hinder the application of chiral phosphoric-acid-based MOFs. Here, we propose a systematic study on the oriented synthesis and structure-property relationship of chiral phosphoric-acid-based MOFs for asymmetric hydrogenation combining theory with experiments. Molecular Simulation will be employed to rationally design chiral phosphoric-acid-based MOFs microstructure, and further performed Density Functional Theory (DFT) to deeply investigate the catalytic mechanism, and establish a structure-activity relationship between microstructure and catalytic performance. Based on the theoretical results, the size effect, confinement effect, and stereochemistry effect on the activity and enantioselectivity of asymmetric hydrogenation will be analyzed. The key factors and intrinsic laws of chiral phosphoric-acid-based MOFs catalyzed asymmetric hydrogenation will be revealed. Theoretical results will guide the oriented synthesis of high-performance chiral phosphoric-acid-based MOFs for asymmetric hydrogenation. Two synthetic strategies: chemical self-assembly and post-synthetic modification provide the versatile mean for introducing chiral phosphoric-acid sites into MOFs’ frameworks. The catalytic performance of asymmetric hydrogenation over chiral phosphoric-acid-based MOFs will be comprehensively evaluated. Moreover, experimental results will verify theoretical results, and be useful to modify the theoretical models and methods. Based on the relationship of “structure-property-synthesis” , this project will significantly lead to a new horizon for the design and development of new chiral MOFs for high-performance of asymmetric catalysis. The methodology can be further extended to the design of novel materials and the integration of theory and experimental science.
手性磷酸基金属有机框架材料(MOFs)在不对称氢化反应中表现出了较大的应用潜能。然而,MOFs结构的复杂性及反应机理的不确定性,限制了其设计、合成与应用。本项目拟通过分子模拟设计手性磷酸基MOFs和密度泛函理论研究不对称氢化反应机理,加深对其微观结构与催化性能之间关系的解析;理论层面深入剖析手性磷酸基MOFs结构的尺寸效应、限阈效应、立体化学效应对催化性能的影响,揭示诱导手性催化的关键因素和内在规律;理论指导实验,基于化学自组装和后修饰合成策略,定向合成手性磷酸基MOFs,综合评价手性磷酸基MOFs催化不对称氢化的效率;实验结果验证理论,修正理论模型和方法。本项目的实施从“结构-性质-合成”的关系入手,理论指导实验定向合成高效的手性磷酸基MOFs,应用于不对称氢化反应,为材料的设计与开发提供新的思路与理论依据,促进理论与实验科学的融合。
金属有机框架材料(Metal-Organic Frameworks,MOFs)因其独特结构的尺寸效应、形状效应、限阈效应、主-客体相互作用,在吸附、分离、催化等领域已有广泛应用。近年来,随着手性基团定向合成引入刚性的MOFs骨架中,使其在不对称催化、对映体选择分离领域展现出诱人的应用前景。利用分子模拟和DFT计算结合,进行定向分子设计手性MOFs催化剂,从分子层面揭示反应构效关系,预测反应性能筛选潜在催化剂,将给手性MOFs的设计与开发带来新的突破。为了解决理论描述手性MOFs结构的复杂性,研究反应机理的不明确性,以及缩短开发高效手性催化剂的周期。本项目拟利用分子模拟定向设计手性MOFs催化剂;分子力学和量子化学结合的ONIOM模型研究手性MOFs在催化不对称氢化反应中的机理、反应活性和对映体选择性;重点研究了手性MOFs特殊孔道结构与对映体选择性的进行了“构效”研究,通过非共价相关作用和应力模型揭示了刚性的MOFs诱导高对映体选择性的成因。为设计定向合成手性MOFs提供理论依据和指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
卫生系统韧性研究概况及其展望
手性MOFs结构配位聚合物的设计、合成及其在不对称催化中的应用
Hemilabile配体的设计、合成及其不对称氢化反应的研究
基于天然手性源骨架的新型手性磷酸催化剂的设计合成及不对称催化性能研究
含混合配体的MOFs基不对称催化剂的设计、合成及修饰