The directional conversion of biomass to produce qualified syngas (synthesis gas) turn out to be the key process for biomass based liquid fuel production industry. A creative pathway for biomass syngas production is put forward in this proposal based on directional gasification and in-situ CO2 separation. The composite structure of Fe/CaO was introduced into the biomass thermochemical conversion process, combining the catalytic effect and the reaction equilibrium promotion. Three key processes in biomass thermochemical conversion network, that is, CO2 separation, tar macromolecular catalytic cracking and H2/CO conditioning, can be simutaneously realized in the integrated system. And also, the directional control of the overall process and the endpoint product distribution can be achieved based on the understanding of the whole reation network. In the proposed project, profound research will be performed on the reaction network of biomass thermal conversion with Fe/CaO as the intermediate, fousing on the mechanism of the process. Through the investigation on the interaction effect of Fe/CaO and also the kinetic and themodynamic analysis of the key processes, the coupling mechanism of CO2 separation, macromolecular cracking and H2/CO conditioning process would be addressed, together with the functioning dynamics of Fe/CaO as both the process catalyst and the absorbant. At the end, the directional controling measure of the biomass thermal conversion process for targeted product distribution would be achieved, based on the understanding of the reaction scheme. The achievement of the proposed project would definitely provide data fundamentals and knowledge support for the development of advanced technologies on biomass directional conversion and liquid fuel production.
生物质定向转化制备高品质合成气成为生物质液体燃料技术的关键环节,本课题研究Fe/CaO作用于生物质定向转化体系的合成气形成途径。将Fe/CaO 复合结构引入热转化体系,将催化过程与反应平衡移动相结合,在体系中实现CO2原位分离,并通过平衡推动和催化作用对焦油大分子催化转化、H2/CO 调变过程产生促进,获得对于过程和终端产物的定向性调控。对Fe/CaO作用下的反应体系进行深入机理性分析,通过Fe/CaO 材料的交互作用研究和关键过程分析,重点解决反应体系中关键过程的耦合机理和Fe/CaO催化/吸收功能的发挥机制,获取反应体系的定向性调控手段,为生物质定向转化和液体燃料制备先进技术的开发提供数据基础和知识支持。
生物质基液体燃料是生物质能源领域最具发展前景的方向,特别是生物燃料在交通运输部门的应用是生物质能源实现化石燃料清洁替代的最为现实的路线。生物质定向转化制备高品质合成气是生物质液体燃料技术的关键环节,但是高品质合成气的制备却始终是该领域技术研发的瓶颈问题,需重点解决可凝性大分子液体产物深度转化、CO2 脱除、气体组分调整等问题。. 本课题研究了Fe/CaO 作用于生物质定向转化体系的合成气形成途径。将Fe/CaO 复合结构引入热转化体系,在体系中实现CO2 原位分离,大分子液体产物深度转化、合成气组分调整。课题执行中,搭建了Fe/CaO复合材料制备与表征系统、生物质固定床定向催化热解实验平台、PY-GC/MS快速热解及分析平台,保证了课题开展所需的实验及分析要求;通过多条件的制备和表征,筛选并开发了Fe/CaO复合催化吸收材料,取得了较好的试验效果,授权发明专利2项;开展了CaO和Fe/CaO材料的CO2吸收特性研究、掌握了不同条件下的材料吸收性能并建立了宏观动力学模型;利用PY-GC/MS联用仪开展了可凝性大分子液体产物催化转化研究,探讨了Fe/CaO制备条件、配比对于催化过程的影响,掌握了大分子产物的转化路径和Fe/CaO的作用发挥机制;在固定床反应器中开展了Fe/CaO催化下的生物质热转化体系关键过程的耦合实验及机理研究,明晰了不同条件下的反应发生过程,获取了反应体系的定向性调控手段,为生物质定向转化和液体燃料制备先进技术的开发提供数据基础和知识支持。. 项目执行期共发表论文23篇,其中SCI期刊论文8篇,EI收录1篇,授权发明专利2项,申请发明专利3项,培养博硕士研究生3名,共有42人次参加国内学术会议。
{{i.achievement_title}}
数据更新时间:2023-05-31
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
山核桃赤霉素氧化酶基因CcGA3ox 的克隆和功能分析
基于LBS的移动定向优惠券策略
煤/生物质流态化富氧燃烧的CO_2富集特性
HPLC 与 HPCE 结合测定复方湿生扁蕾胶囊中 6 种化学成分含量
基于化学链反应的FexOy/CaO作用下生物质定向热转化过程机制研究
熔盐作用下生物质催化热裂解与还原耦合过程的机理研究
基于Fe2O3与CaO的生物质复合化学链气化耦合机理及协同作用机制
生物质与废塑料定向热解耦合制芳烃过程基础