Semiconducting materials that exhibit stable charge transport at high temperatures are important for some specially field like oil industry, automobile, aeronautics and astronautics. It’s not only important for scientific research, but also has great potential for industry applications. To improve the device performance and lifetime at high temperature, wide-bandgap materials and two dimension materials have been utilized. However, they all have some technical problems for low-cost and large-area manufacturing. Semiconducting polymers are functional organic molecules with conjugated backbones. Due to their advantages like light weight, low cost processing, flexible and stretchable, semiconducting polymers become the ideal materials for next generation flexible electronics. The morphology of semiconducting polymer is a key factor for device performance. However, most of the semiconducting polymers have relatively low glass transition temperature and the morphologies will be disrupted at high temperature. Therefore, the performance of semiconducting polymers degrades at elevated temperatures. Recently, a high performance semiconducting polymer was blended with a high glass transition temperature polymer insulator, resulting in an organized, interpenetrating network that allows the electrical charge to flow evenly throughout while holding its shape in extreme temperatures up to 220 °C. This opens a new way to design semiconductor that exhibit stable charge transport at high temperatures. However, the formation of the interpenetrating network need further study, the mechanism of stable charge transport is unclear, and the up limit of temperature that the material could withstand is not verified. We hope by this project, we could investigate these questions, and provide theoretical supporting for the design of thermal stable semiconducting polymers.
高温稳定的半导体材料可满足石油钻井、汽车工业及航空航天等特殊领域的需求,具有重要的科研价值和经济效益。目前耐高温半导体的研究主要集中于宽带隙无机材料及二维材料,但这些材料还存在一些低成本大面积制备的问题。聚合物半导体是一类具有共轭单元和光电性能的有机分子,具有质轻、易加工、柔性可拉伸等优势,是构建柔性电子的理想载体之一。聚合物半导体的聚集形态对器件的性能有着至关重要的作用,由于本身较低的玻璃化温度,其聚集态的有序堆积在高温下易受到破坏,因此大多数聚合物半导体难以实现高温下正常工作。最近研究发现,将聚合物半导体与高玻璃化转变温度的绝缘体共混,可以获得具有互穿网格结构的半导体材料,实现室温至200°C范围内性能稳定的工作。但该网格结构的形成机制还不明确,载流子传输的高温稳定原理尚不明晰,此类材料耐高温上限也亟待探明。本申请希望探索这些国际前沿问题,为寻找耐受温度更高的材料体系做好理论基础。
高温稳定的半导体材料可满足石油钻井、汽车工业及航空航天等特殊领域的需求,具有重要的科研价值和经济效益。目前耐高温半导体的研究主要集中于宽带隙无机材料及二维材料,但这些材料还存在一些低成本大面积制备的问题。聚合物半导体是一类具有共轭单元和光电性能的有机分子,具有质轻、易加工、柔性可拉伸等优势,是构建柔性电子的理想载体之一。聚合物半导体的聚集形态对器件的性能有着至关重要的作用,由于本身较低的玻璃化温度,其聚集态的有序堆积在高温下易受到破坏,因此大多数聚合物半导体难以实现高温下正常工作。本项目研究了一类高温稳定的聚合物半导体,研究了宽温度范围下其电学、聚集态结构的变化,揭示了其高温稳定的原因,实现了220℃下超过1cm2/Vs的有机场效应晶体管,为寻找耐受温度更高的材料体系做好理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
黑河上游森林生态系统植物水分来源
敏感性水利工程社会稳定风险演化SD模型
基于Pickering 乳液的分子印迹技术
地震作用下岩羊村滑坡稳定性与失稳机制研究
采用黏弹性人工边界时显式算法稳定性条件
聚合物反应性共混体系的研究
结晶聚合物共混物的共结晶及其结构与性能特征的研究
离子交联聚合物的共混体系研究
聚合物结构及氢键对共混聚合物的热导率调控及其机理研究