Anthropogenic activities have induced a dramatic increase in atmospheric aerosols. Although aerosol reduces total radiation, it increases the fraction of diffuse radiation. The more diffused sunlight penetrates into canopy more efficiently and canopy photosynthesis is then stimulated. But under very high aerosol loadings, the negative effect caused by total solar radiation reduction could offset the diffuse radiation fertilization effect, and therefore reduce canopy carbon uptake. Aerosol chemical composition depends on emission sources and varies in a wide range. Most previous aerosol studies are focused on the impacts of solar radiation changes, but ignore the effects caused by the chemical component deposition. Nitrogen compounds accounts for 20-30% of the aerosol mass in most regions in China. Deposition of these nitrogen compounds will profoundly alter the response of carbon cycle to radiation change induced by aerosols. However, this question has rarely been addressed. In this research, we will choose three sites along the urban-rural aerosol gradient in Beijing, and simulate canopy deposition using 15N labeled nitrogen. Leaf photosynthesis, leaf physiological and biochemical properties, plant growth and soil processes will be measured. The key hypothesis is that, canopy nitrogen deposition will increase leaf nitrogen concentration, and therefore enhance the response sensitivity of leaf photosynthesis and plant growth to increasing diffuse radiation induced by aerosols. The proposed study could partition the relative contributions of aerosol-induced radiation changes and aerosol-associated canopy nitrogen deposition on ecosystem carbon cycle, and improve the understanding of the underlying eco-physiological mechanisms.
气溶胶粒子能够散射太阳辐射,使更多散射光进入冠层内,缓解阴生叶光限制,从而促进冠层光合速率,提高冠层碳吸收;但高气溶胶浓度下,其对辐射的吸收作用导致总辐射下降,削弱散射光施肥效应,降低冠层碳吸收。以往的研究通常仅关注气溶胶的辐射效应,忽略了气溶胶沉降到生态系统后,其化学组分对碳循环的影响。我国多数区域气溶胶含氮量为20-30%,这些含氮颗粒物的沉降如何影响碳循环对气溶胶辐射效应的响应,相关研究还很缺乏。本研究拟利用城郊气溶胶浓度梯度,选取三个污染程度不同的站点,并设置15N标记的冠层氮沉降实验。通过对光合速率、叶片生理生化、个体生长等过程的监测,探讨气溶胶的辐射效应及氮沉降效应对植物光合及植株生长的影响。本研究的关键科学假设为冠层氮沉降上升将提高叶片含氮量,促进光合速率对散射辐射上升的响应强度。本研究将有助于分离气溶胶的光学特性及化学组分对碳循环影响的相对贡献,揭示相关过程的生理生态机制。
气溶胶污染已经成为影响当前气候变化的关键因素。气溶胶颗粒不仅改变了太阳辐射,同时其含氮化合物的沉降也会增加生态系统氮输入。太阳辐射及氮供应通过不同的生物化学过程调控植物叶片及冠层的光合作用,进而影响植物个体生长。本项目旨在研究气溶胶导致的太阳辐射变化及氮沉降效应如何影响植物叶片光合作用及个体生长,并尝试解析相关生理生态机制。基于项目计划书,本研究在北京周边地区设置了盆栽实验,并进行了氮同位素标记的模拟氮沉降处理,在不同气溶胶天气下观测杨树叶片的光合速率,叶片氮吸收,生物量累积等过程。项目执行期间取得如下重要进展:通过稳定性同位素示踪技术证实了冠层施加的氮可以直接被杨树叶片吸收,并显著促进了叶片的光合速率;发现高气溶胶天气下,杨树叶片光合及茎干生长速率显著提高,而阳生叶和阴生叶叶片光合对气溶胶响应的机制不同,并指出气溶胶主要通过改变光照条件和大气微环境来促进植物碳吸收;发现大气污染物对杨树叶片光合及植株生长的影响受大气水分条件的调控。项目执行期间,项目负责人发表第一作者SCI论文一篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
监管的非对称性、盈余管理模式选择与证监会执法效率?
农超对接模式中利益分配问题研究
拥堵路网交通流均衡分配模型
气溶胶辐射效应对农作物光合作用及GPP遥感估算的累积影响研究
氮沉降对苔藓植物胁迫后补偿生长的影响及其机理
气溶胶辐射效应对灰霾边界层影响的大涡模拟研究
气溶胶对中国东部冬季低云微物理特性及云辐射效应的影响研究