Nanoparticles have become one of effective tools for rapid diagnosis and treatment of disease. It is difficult to adjust the requirement of the stable,uniform and high throughput synthesis of nanoparticles with the conventional batch processes or single layer microfluidic synthesis. Two basic scientific issues, two phase flow distribution and fluid mass transfer in high shear force and high flow rate , become the top priorities and the main difficulties for realizing high throughput and controllable synthesis of nanoparticles. In this project, these two issues are to be investigated. Firstly, based on the mixing process of shear force and the secondary vortex effects coupled with flow convection and mass transfer in high throughput and high flow rate, the mechanism of rapid microdroplet generation and fast mixing is to be developed. Secondly, the model of flow mass transfer based on the two-dimensional parallel microchannel is set up to reveal the mechanism of parallel amplification of droplet production in high flow rate. Thirdly, based on the above two aspects, we set up the model of flow convection, vortex and mass transfer in a three-dimensional muilti-microchannel to fulfill the module integration of rapid mixing, parallel droplet generation and reagent introduction. Finally, three-dimensional multifunctional microfluidic chips are to be developed for experimental study. The theory and technology such as two phase flow distribution and fluid mass transfer in high shear force and high flow rate are obtained in this project, which lays the foundation of high throughput and controllable synthesis of nanoparticles.
纳米颗粒已成为疾病快速诊断与治疗有效工具之一,单纯依靠传统纳米颗粒制备方法或单一微流控芯片难以满足高通量纳米颗粒可控合成的要求,因此解决高剪切力、高流速下两相流失稳过程与二次涡流流场分布、两相流对流扩散传质与涡传质规律两大基础科学问题成为纳米颗粒高通量可控合成的首要任务和主要难点。针对以上问题,本项目首先基于高通量、高流速下剪切力驱动和二次涡流扰动与两相流体的对流传质、涡传质过程,提出液滴高通量生成与快速混合机理;其次,建立二维并行通道内两相流传质模型,揭示高流速下液滴生成产量的并行放大机理;再次,基于上述两点,建立高剪切力、高流速下三维空间多通道内两相流对流传质与涡传质模型,实现液滴生成、快速混合、试剂引入等芯片模块化集成;最后构建三维多功能微流控芯片,开展实验研究。课题获得的高剪切力、高流速下两相流场分布与传质等方面的理论和技术,可为纳米颗粒的高通量可控合成奠定理论和技术基础。
微纳胶囊(颗粒)在分析化学、生物医疗等领域具有广泛的应用前景,液滴微流控技术为微纳胶囊的可控合成提供理论与技术保障。纳米颗粒已成为疾病快速诊断与治疗有效工具之一,单纯依靠传统纳米颗粒制备方法或单一微流控芯片难以满足高通量纳米颗粒可控合成的要求,因此解决高剪切力、高流速下两相流失稳过程与二次涡流流场分布、两相流对流扩散传质与涡传质规律两大基础科学问题成为纳米颗粒高通量可控合成的首要任务和主要难点。针对以上问题,本项目首先基于高通量、高流速下剪切力驱动和二次涡流扰动与两相流体的对流传质、涡传质过程,提出液滴高通量生成与快速混合机理;其次,建立二维并行通道内两相流传质模型,揭示高流速下液滴生成产量的并行放大机理;再次,基于上述两点,建立高剪切力、高流速下三维空间多通道内两相流对流传质与涡传质模型,实现液滴生成、快速混合、试剂引入等芯片模块化集成;最后构建三维多功能微流控芯片,开展实验研究。课题获得的高剪切力、高流速下两相流场分布与传质等方面的理论和技术,可为纳米颗粒的高通量可控合成奠定理论和技术基础。.课题立足于生物医疗领域对于纳米颗粒合成提出的新要求,深入研究了高通量、高流速下基于剪切力驱动的液滴生成机制与流场传质模型,高通量、高流速下基于二次涡流扰动的两相流传质机制,提出了多层T型入口正弦型通道微混合增强机制,开展了三维多层微流控芯片的两相流高通量快速混合与纳米颗粒合成实验。实验结果证明了所提出理论的正确性,该研究成果在纳米颗粒合成,单细胞测序等领域具有重要的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
粗颗粒土的静止土压力系数非线性分析与计算方法
基于SSVEP 直接脑控机器人方向和速度研究
针灸治疗胃食管反流病的研究进展
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
纳米颗粒两相流矩方法模型的研究
纳流混合器的优化及其在纳米金颗粒合成反应中的应用研究
旋流液体雾化火焰中纳米颗粒掺杂合成的机理研究
混合纳米颗粒添加粗颗粒流态化聚团破碎与团聚机制