The conversion of CO2 to chemicals and fuels with the assistance of H2 is a promising route that may offer a solution to alternative to fossil fuels and environmental issues. Although considerable progress has been made in CO2 hydrogenation to various C1 chemicals, it is still a great challenge to synthesize value-added products with more than two carbons directly from CO2, such as gasoline-range hydrocarbons (C5~C11 hydrocarbons) due to the extreme inertness of CO2 and a high C–C coupling barrier. The main objective is to maximize catalytic activity and selectivity of C5~C11 hydrocarbons and to reduce CO and CH4 production by using new catalyst system. Based on the new strategy of reaction coupling proposed by the application, a bifunctional catalyst affording two types of active sites for CO2 activation and C−C coupling will be used for direct conversion of CO2 to C5~C11 hydrocarbons and the relative nanocatalysis study will be carried out in this project. The precise control of the structure of oxygen vacancies and hydrogenation ability of metal oxides, C−C coupling, the integration manner of the active components and stability of these active sites will be achieved. The structure-performance relationship will be investigated in detail by various in-situ and ex-situ characterization methods. In addition, the activation mechanism of CO2, the rule of the formation of reaction intermediates and C−C precise coupling, the synergy mechanism of two active sites, as well as the deactivation behavior will be clarified. The implement of this project will provide a new route and valuable information for the development of new CO2 hydrogenation to gasoline-range hydrocarbons catalysts with promising catalytic performance.
借助氢气将CO2转化成化学品和燃料有望成为解决化石燃料替代与环境问题的重要途径。尽管CO2加氢合成C1化学品取得了很大进展,但由于CO2分子的化学惰性以及较高的C–C偶联能垒,将CO2直接转化为两个碳原子以上的化合物,如汽油烃类组分(C5~C11烃)仍是一个巨大的挑战。采用何种全新催化体系,同时实现较高的活性和C5~C11烃选择性及较低CO和CH4选择性是关键。本项目基于反应耦合的研究策略,围绕同时具有CO2活化及C–C偶联功能的双功能催化剂开展CO2直接合成C5~C11烃的相关纳米催化研究。实现氧化物表面缺陷结构与加氢能力、C–C键偶联,双功能耦合方式及稳定性的精准调控。综合利用各种原位及离线表征手段,深化对构效关系的认识,深入研究CO2活化机制、中间体形成和C–C精准偶联规律、双功能的协同作用机制与失活机理,为高性能CO2直接合成汽油烃类组分催化剂的研发提供一条新的探索途径及理论指导。
借助可再生能源获取电能分解水制得的绿氢,将二氧化碳(CO2)转化为大宗化学品和液体燃料,不仅能实现温室气体的减排,而且有助于解决对化石燃料的过度依赖以及可再生能源的存储问题。相对于CO2加氢合成C1产品,由于CO2分子的化学惰性以及较高的C–C偶联能垒,将CO2直接转化为两个碳原子以上的化合物,如汽油烃类组分(C5~C11烃)仍是一个巨大的挑战。本项目基于反应耦合的研究策略,围绕同时具有CO2活化及C–C偶联功能的双功能催化剂开展CO2直接合成C5~C11烃的相关纳米催化研究。实现了复合氧化物表面缺陷结构与加氢能力、多级孔分子筛上C–C键偶联、双功能耦合方式及稳定性的精准调控。通过将高性能铟基复合金属氧化物与具备精准偶联功能的高稳定性多级孔分子筛的有效耦合,构建了更加高效的CO2加氢直接合成汽油馏分烃双功能催化剂。综合利用各种原位及离线表征手段,深化了对构效关系的认识,系统揭示了CO2活化机制、中间体形成和C–C精准偶联规律、双功能的协同作用机制与失活机理,为更高性能CO2直接合成汽油烃类组分催化剂的研发提供一条新的探索途径及理论指导。另外,在100毫升单管完成成型催化剂性能评价,催化剂在工况条件下,CO2单程转化率21%,通过尾气再循环总转化率为85.5%,汽油馏分选择性达到76%,催化剂寿命大于5000小时;完成催化剂吨级放大制备及中试验证。四年来,本项目共发表期刊论文21篇,包括Science Advances、ACS Central Science、ACS Catalysis和Journal of Catalysis等一区论文10篇,另外,申请国家发明专利共3项,在国内外学术会议上做口头报告10人次(其中特邀学术报告3个),培养毕业博士研究生3名、毕业硕士研究生1名。鉴于本课题组在二氧化碳加氢领域内的贡献,应邀为ACS Central Science(2020, 6(10): 1657-1670)、Catalysis Toady(2019, 330: 61-75)和化工进展(2019, 38(01): 183-195)杂志撰写三篇二氧化碳加氢非均相合成液体燃料和甲醇的指南性综述。
{{i.achievement_title}}
数据更新时间:2023-05-31
监管的非对称性、盈余管理模式选择与证监会执法效率?
Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
双吸离心泵压力脉动特性数值模拟及试验研究
双功能催化CO2加氢直接高选择性合成对二甲苯的研究
CO2催化加氢高选择性合成汽油馏分烃
铟基氧化物/分子筛双功能催化CO2加氢直接合成C2+烃的研究
[Cu-ZnO-Al2O3]/[HZSM-5]核壳双功能催化剂的制备、结构及其CO2加氢直接合成二甲醚反应性能