The control, reduction, and conversion of the persistent organic pollutants (POPs) dioxins have become one of the important global environmental problems because POPs have posed a serious threat to human health and ecological environment. Focusing on the reaction reactivity and regulation of the reaction between dioxins and hydroperoxides, in this project, high-level quantum chemistry and dynamical methods have been employed to clarify the reaction mechanism and the thermodynamic and kinetic behavior of the whole interaction process through the systematical investigations of the above interaction process at the molecular levels. We will reveal the formation mechanism of the hydroxyl and alkoxyl radicals and their evolution law through the investigations of the molecular dynamics of the whole reaction process and establish the correlations between the reaction reactivity and the structures and property parameters of the reactants so as to achieve the predictability and controllability of the reaction reactivity of the title reaction through the investigations of the halogen- and alkyl-substituted effects. Moreover, we will gain the dependency of the reaction reactivity on the external factors through the investigations of the influences of the temperatures, pressures, solvent effects, and medium molecules on the title reaction. These theoretical results are very important for further investigations of the conversion mechanism and regulation of the dioxins in environment and in vivo. Furthermore, the insights gained from this project will provide the necessary scientific basis and theoretical guidance for the performance of the relevant experimental studies.
二噁英类持久性有机污染物(POPs)严重威胁人类健康和生态环境,其控制、削减及转化等问题已成为倍受关注的全球性环境问题。围绕二噁英类污染物与氢过氧化物之间的反应活性及其调控等问题,本项目拟运用量子化学和动力学方法,在分子水平上系统探讨二噁英类污染物与氢过氧化物之间的作用过程,阐明其反应机制及热动力学行为;结合对整个反应过程的动力学模拟研究,揭示标题反应中羟基或烷氧自由基的产生机理及其演化规律;通过考察卤代效应和烷烃基取代效应,建立反应活性与反应物结构及性质参数之间的关联,实现对标题反应的可预测性和可调控性;通过考察温度、压强、溶剂效应及介质分子等外界因素对反应的影响机制,获得反应活性与外界因素的相关性。该项目的顺利开展不仅对深入探讨二噁英类POPs在环境和生物体内的转化机制及其调控具有重要意义,而且也可为相关实验研究的开展提供必要的科学依据和理论指导。
二噁英类持久性有机污染物(POPs)具有强烈的致癌、致畸、致突变效应,严重威胁人类健康和生态环境,其控制、削减及转化等问题已成为倍受关注的全球性环境问题。本项目围绕二噁英类污染物与氢过氧化物之间的反应活性及其调控等问题,运用量子化学和动力学方法,在分子水平上系统探讨了多氯二苯并-对-二噁英(PCDDs)、多氯二苯并呋喃(PCDFs)二噁英类污染物及卤代苯醌类污染物与有机氢过氧化物之间的作用过程,阐明了上述反应过程的反应机制及热动力学行为;结合对整个反应过程的动力学模拟研究,揭示了上述反应中羟基或烷氧自由基的产生机理及其演化规律;通过考察卤代效应和烷烃基取代效应对反应活性的影响机制,建立了反应活性与反应物结构及性质参数之间的关联,实现了对标题反应的可预测性和可调控性;结合统计热力学原理,考察了温度、压强、溶剂效应及介质分子(如水分子)等外界因素对反应的影响,获得了反应活性与外界因素的相关性。围绕上述研究内容,课题组开展了一系列的研究工作,完成了预期的研究目标,取得了一些有意义的研究成果。此外,在寻找能够转化和降解二噁英类污染物的新型反应物种方面也进行了拓展和尝试。相关研究结果不仅对深入探讨二噁英类POPs在环境和生物体内的转化机制及其调控具有重要的现实意义,而且也可为相关实验研究的开展提供必要的科学依据和理论指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
EBPR工艺运行效果的主要影响因素及研究现状
妊娠对雌性大鼠冷防御性肩胛间区棕色脂肪组织产热的影响及其机制
珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
基于旋量理论的数控机床几何误差分离与补偿方法研究
咪唑类离子液体与二噁英类物质相互作用的多尺度理论研究
环境中溴代二噁英类物质污染状况及其特征
介质阻挡放电耦合准分子紫外光协同降解类二噁英物质的反应机理
芳香烃受体介导的二噁英类环境污染物TCDD对胎盘血管发育的影响及其分子机制