Using theories from nonlinear functional analysis, in particular from variational methods, critical point theory, bifurcation theory as well as from nonlinear partial differential equations, in this project we aim to study solutions structures of several classes of nonlinear partial differential equations and systems including the existence and multiplicity of solutions, symmetry, geometry property of solutions. The focus will be on the property of extremal functions and energy solutions to weighted Hardy-Sobolev type inequalities, solutions structure of nonlinear Schrodinger type equations and systems, the potential effects of decaying and unbounded potentials on ground and bound state solutions, multiplicity of solutions for quasilinear Schrodinger equations, semilinear variational problems. The topics lie in frontier of nonlinear variational problems and are important both in theory and in applications. Our study will advance the theory and applications of nonlinear functional analysis.
本项目利用非线性泛函分析理论和方法特别是利用变分方法、临界点理论,分歧理论和椭圆方程理论来研究几类具有变分结构的非线性偏微分方程的可解性、多解的存在性,以及解的对称,几何和分析性质。将主要研究带权Hardy-Sobolev型不等式极值函数和能量解的性质;非线性薛定鄂方程和方程组解的结构及相关问题,具有无界和衰减位势的非线性薛定鄂方程的基态解、束缚态解的存在性以及解的集中现象的研究;一类拟线性薛定鄂方程问题解的存在性和多解问题研究;半线性变分问题的研究。本项目的选题是近年来国际上变分方法方面热门前沿研究课题,具有重要的理论意义和研究价值。我们期望通过对上述具体问题的研究,推进非线性分析理论与非线性方程应用的发展。
本项目利用非线性泛函分析理论和方法特别是利用变分方法、临界点理论,分歧理论和椭圆方程理论来研究几类具有变分结构的非线性偏微分方程的可解性、多解的存在性,以及解的对称,几何和分析性质。重要结果包括Clark's定理的推广及对拟线性问题的应用;拟线性问题的多重束缚态解;多个偶和的非线性薛定谔方程组的多重束缚态解;多个偶和的非线性薛定谔方程组的基态解的渐进行为;格林函数的性质及应用; 和偶非线性薛定谔方程组驻波解的轨道稳定性。这些选题是近年来国际上变分方法方面热门前沿研究课题,具有重要的理论意义和研究价值。我们的工作推进了非线性分析理论与非线性方程应用的发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
粗颗粒土的静止土压力系数非线性分析与计算方法
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
气载放射性碘采样测量方法研究进展
非线性变分问题的若干前沿课题研究
有界变差函数空间中的几个变分问题
非线性几何变分问题
非线性变分问题研究