In the next future significant advancements in materials science and life sciences will be possible only performing researches able to return information about the relationship between materials structure, function and nature. As a consequence, the combination of structural information, elemental data and spectroscopic characterization within the same experimental setup is an urgent demand for many scientific and technological researches. At present, available X-ray microscopes may only provide independently or absorption based spectroscopic information or three-dimensional structure information at the best, at the nanometer resolution. In fact,it is almost impossible collecting multi-sources information simultaneously, a condition that significantly limits x-ray microscopy applications in many research areas and applications.This project intends combining three-dimensional imaging techniques allowed by a full field X-ray microscope with spectroscopy techniques. The proposal is based on the Beijing Synchrotron Radiation full field X-ray imaging microscope setup with the main goal to make possible the simultaneous operation of monochromator, zoneplates and detectors using the original imaging theoretical framework developed in our institute. We intend to setup an original instrument that working at different magnifications of the image system will allow to maintain the magnification constant during data collection at variable energy.Three-dimensional elemental distributions, spectroscopic characterization and three-dimensional structural information will be obtained by means of a new multi-element separation algorithm and an efficient image segmentation algorithm. Based on the well-established x-ray absorption near edge structure (XANES) spectroscopy theory, this project will develop an innovative imaging technology and a reliable experimental platform useful for a full field x-ray microscope with independent proprietary intellectual property rights. When completed, the instrument will provide a unique powerful research tool to achieve a significant progress in materials science and life sciences with an important impact in many research areas and technological applications.
把样品的结构信息、元素信息和谱学信息结合起来,研究物质结构、功能和性质之间的相互关系,是材料科学、生命科学发展的迫切需求。然而,现有的纳米分辨X射线显微术只能分别获得单一、有限的三维结构信息或谱学信息,难以实现多源信息的同时获得和无缝融合。本项目拟将X射线全场显微术的三维成像技术和谱学技术结合起来,以北京同步辐射纳米分辨X射线全场显微成像设备为基础,深入研究X射线显微成像理论,构建单色器、波带片和探测器的联动机构,发展和建立多元素信息分离算法和准确高效的图像配准算法,最终实现样品的三维元素信息、谱学信息和三维结构信息的同时获得。该项目的开展将创新性的建立一套具有自主知识产权的基于近边吸收谱理论的X射线显微成像技术和实验平台,为材料科学、生命科学的发展提供更有利的研究手段,具有重要的科学意义和广泛的应用前景。
现有的纳米分辨X射线全场显微术成像技术只能分别获得单一、有限的三维结构信息或谱学信息,难以实现多源信息的同时获得和无缝融合。本项目将X射线全场显微术的三维成像技术和谱学技术结合起来,并以北京同步辐射纳米分辨X射线全场显微成像设备为基础,通过深入研究X射线显微成像理论,构建单色器、波带片和探测器的联动机构,以及多元素信息分离算法、图像配准算法和具有空间分辨能力的吸收谱信息的提取方法的建立,最终实现了样品的三维元素信息、谱学信息和三维结构信息的同时获得。该项目的顺利完成有利的推动了基于近边吸收谱理论的X射线显微成像理论的完善和相关实验平台的建设,为材料科学、生命科学的发展提供更有利的研究手段,具有重要的科学意义和广泛的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
1例脊肌萎缩症伴脊柱侧凸患儿后路脊柱矫形术的麻醉护理配合
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
双吸离心泵压力脉动特性数值模拟及试验研究
空气电晕放电发展过程的特征发射光谱分析与放电识别
土壤中磷的同步辐射X射线吸收近边结构谱测量方法研究
基于X射线纳米全场显微的衍射形貌学方法研究
基于微分相衬和散射衬度成像机制的多衬度X射线全场显微成像方法研究
基于未修饰金属富勒烯的新型MRI造影剂制备及X射线近边吸收谱研究