Transfer printing is a key technique for the fabrication of flexible electronics. Recently, a novel laser-driven non-contact transfer printing approach has been proposed, which has revealed the great potential by expanding the scope of applications. Compared to the conventional contact transfer printing approaches, the new one is relatively independent of the surface properties and preparation of the substrate onto which the objects are transferred. The challenges still exist in laser-driven non-contact transfer printing such as the ablation of the polymeric transfer tool material due to laser-induced high temperature, which restrict the repeated transfers and massively processing schemes. This research project will focus on the novel transfer printing approach through a systematic and intensive study. Based on the thermal mechanics theory, a general theoretical model will be established to explore the mechanism, explain the experimental observations and predict the complex behavior. Analytical and numerical modeling results will be obtained for an evaluation of the effects which are caused by the main factors. The transfer printing process optimization will be carried out, incorporating the structures, dimensions, material properties and thermal loadings. Then an optimized scheme will be proposed and validated by the experiments to control the critical variables in the transfer printing. The research findings will serve as the design tools and provide the theoretical guidance for improving the success rate and efficiency of the laser-driven non-contact transfer printing, and facilitate the development as well as the applications of the approach in the fabrication of flexible electronics.
转印是用于柔性电子器件制备的一类关键技术。研究者们最近提出了一种非接触式激光转印方法,与以往任何一种接触式转印方法不同,该方法不依赖于接收转印物的目标基体的表面属性和构造,因而大大扩展了其应用范围,展示出了巨大的潜力;但其中也存在着聚合物转印工具的高温烧蚀等问题和挑战,限制了多次数转印的成功率和大规模转印的效率。本申请项目将系统、深入地研究这一新的转印方法:基于热-力学理论,建立准确揭示转印机理、阐释实验现象、预测复杂热-力学行为的一般理论模型;提出相应的解析解法、开展相关数值模拟,评估各主要因素对转印效果的影响;从结构形式、尺寸、材料参数及热加载方式等方面对系统进行优化设计,控制关键指标,形成经实验验证的最优设计- - 该项研究的成果将为有效提高激光转印的成功率和效率提供理论指导与设计依据,促进激光转印方法的发展及其在柔性电子器件制备中的应用。
转印是用于柔性电子器件制备的一类关键技术。项目负责人与合作者提出了一种不同于任何传统接触式转印方法的非接触式激光转印新方法,该方法利用激光脉冲的生热作用,于极短的时间(通常为几毫秒)内使薄膜在不接触受体的情况下剥离印章,实现转印。由于该方法不依赖于受体的表面属性和构造,因而大大扩展了其应用范围,使转印成功率和效率显著提高。本项目系统、深入地研究了这一新的转印方法:基于热—力学理论,建立了准确揭示转印机理、阐释实验现象、预测复杂热—力学行为的理论模型;提出了相应的解析解法、开展了相关数值模拟,为转印的最优设计提供了依据。通过本项目研究,建立了激光转印的热传导和界面剥离模型,获得了经有限元模拟和实验验证的界面剥离比例法则。在本项目研究的启发下,项目组还对柔性电子器件薄膜结构力学行为等相关内容开展了深入研究,在相关解析模型和解析方法方面取得了进展。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
GSK3β介导的Wnt/β-catenin信号通路在利用牙本质基质构建牙髓牙本质复合体中的调控机制
柔性可延展电子有转角印戳转印的力学机理与模型研究
基于智能软材料的柔性电子新型动态可控转印力学机理研究
多孔基底柔性电子器件的力学分析与优化
柔性电子器件中超弹性材料复杂力学行为的预测及控制