Because of no friction damping which exists in the interface between the tenon and slot for most bladed disk assembly, the resonance produces frequently for the blisk structure under a variety of load actions, such as aerodynamic, mechanical and temperature loads, and then vibration fatigue in blisks is caused by these excessive vibrations. Therefore, suppressing these destructive vibrations becomes a key issue that must be addressed for both design and subsequent use process of blisks. The technologies of damping coatings (here, they include hard coating and viscoelastic damping layer) and intentional mistuning are all used to achieve the vibration control of blisks in recent years. In this project, the two kinds of vibration reduction technologies are integrated effectively and a novel method is proposed, which suppresses vibration based on intentional mistuning obtained by damping coating. Some blisk test pieces are chosen as objects and the following contents will be studied. They are: testing the vibration characteristics of the coated blisks, establishing the dynamic model of the coated blisks with mistuning, identifying the mistuning parameters and optimizing the intentional mistuning of the coated blisks. Through this project, the dynamic mechanism of coating damping and intentional mistuning based on damping coating will be revealed from the point of macro dynamics and the technical support can be provided for the application of this vibration control method in blisks.
由于缺少榫头-榫槽的摩擦阻尼减振环节,航空发动机整体叶盘在气动、机械、温度场等载荷的共同作用下很容易产生共振而使叶盘结构发生疲劳失效。因而,抑制整体叶盘过大的振动成为其在设计以及后续使用中必须解决的一个关键问题。阻尼涂层(硬涂层及粘弹性阻尼层)和主动失谐均可实现对整体叶盘过大的振动进行有效控制。本项目将这两项技术有机结合,提出一种基于阻尼涂层的整体叶盘主动失谐设计及减振的方法。以整体叶盘模拟件为研究对象,主要开展:加装阻尼涂层的整体叶盘振动特性测试、含阻尼涂层的失谐整体叶盘复合结构动力学建模、失谐参数辨识和基于阻尼涂层的整体叶盘主动失谐优化设计等内容的研究。通过本项目的研究将从宏观振动学的角度揭示阻尼涂层以及由涂层构建的主动失谐对整体叶盘的减振机理,最终为上述减振方法在整体叶盘上推广应用提供技术支持。
本项目将阻尼涂层减振技术与主动失谐减振理念相结合来实现对整体叶盘过大的振动进行有效地控制,研究创建了基于阻尼涂层的整体叶盘主动失谐减振设计方法体系。具体包括:组建了用于涂层整体叶盘减振效果和失谐量测量的振动实验系统,除常规测试系统外,还包括可激发整体叶盘做节径运动的非接触多点激励实验系统;以静止及旋转态的整体叶盘为对象,研发了阻尼涂层-整体叶盘复合结构的线性及非线性动力学建模方法,包括集中参数建模、半解析建模和基于有限元模型的减缩建模等,揭示了整体叶盘涂层阻尼减振和基于涂层的主动失谐减振动力学机理;在涂层整体叶盘失谐辨识及应用方面,研究了加装涂层后整体叶盘失谐质量、刚度及阻尼参数的方法,并将失谐辨识方法应用在失谐涂层整体叶盘动力学建模、失谐幅度控制及叶片裂纹检测定位等方面;在基于阻尼涂层的整体叶盘主动失谐设计及减振优化方面,以获得涂层叶盘最优损耗因子、振动响应和附加质量等进行了一般性的减振优化以及尝试实施了基于阻尼涂层的整体叶盘主动失谐设计。总之,通过本项目的研究形成一套先进的利用阻尼涂层构建整体叶盘主动失谐进而实现减振的技术方法体系,为减少整体叶盘有害的振动、提高其抗振动疲劳的能力提供技术参考。
{{i.achievement_title}}
数据更新时间:2023-05-31
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
钢筋混凝土带翼缘剪力墙破坏机理研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
宽弦高速跨音风扇颤振特性研究
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
整体叶盘动力学特性及其硬涂层阻尼减振设计方法
基于三维干摩擦模型的失谐叶盘减振控制及不敏感设计方法研究
薄壁构件硬涂层阻尼减振的多尺度模拟方法与主动设计
多级失谐非线性叶盘复杂系统动力学特性及减振优化方法研究