The Gaussian factor copula model is the standard model in financial industry for CDO pricing and risk measurement. However, because of the leptokurtosis feature of financial data, this model can not match all market prices of the standard CDO tranches, and there exists implied correlation smile and other phenomena which are not consistent with the model assumptions. On the other hand, it possesses arbitrage opportunity when a non-constant correlation is involved, and it is a static model which is not applicable to CDO tranches with different maturities. This project introduces fractal distribution, which is characterized of leptokurtosis, to describe the financial risk factor, and apply the dynamic factor Copula method, to build the dynamic factor copula method based on fractal distribution, and applies it to CDO pricing, it is expected that this model will settle the three problems mentioned above. Meanwhile, fractal distribution is a four-parameter distribution and there is no explicit density function, which brings the model great computational task and complexity. This project studies and designs high efficient algorithms for reducing the model’s complexity and increasing its applicability. Furthermore, we study the risk measurement and design dynamic hedging strategy under this model. This project provides new methodology for the improvement of the market CDO pricing model, enriches the theory of factor copula methods, and will make positive influence on the development of CDO pricing and risk management.
正态因子Copula模型是CDO行业定价和风险度量的标准模型,由于金融数据具有尖峰、厚尾等非正态特征,它不能完全拟合CDO所有分券的市场报价,存在相关系数微笑等现象。其次,当相关系数随时间变化时模型会出现套利机会。另一方面,它是一个静态模型,不能用于基于同一信组合的不同期限的CDO定价。本课题拟引进具有尖峰、厚尾特征的分形分布来拟合风险因子,利用动态因子Copula方法,为CDO定价建立基于分形分布的动态因子Copula方法和理论,预期该模型方法可以解决上述三方面的问题。由于分形分布有四个参数且没有密度函数解析表达式,本课题研究高效快速的数值算法以解决分形分布给模型带来的计算量和复杂性。并进一步研究基于该模型的风险度量方法,设计动态风险对冲策略。本课题为改进CDO市场定价模型提供了新的思路和方法,同时丰富了因子Copula方法的理论,促进了CDO定价和风险管理的发展。
本项目完成了基于分形分布(稳定分布)的因子Copula方法及其在CDO定价中的应用问题的相关研究目标及其扩展研究,凝练了资产证券化的思想方法框架,对其定价任务提出了模块化和工具化分解的思路。针对每一个模块,不仅提出了理论思想方法,而且给出了具体的算法和实现路径,从而使每一个模块都工具化。通过模块的工具化,我们可以根据不同应用场景的特点和需求,组合适合的模块,量身定制与之匹配的定价模型,本项目给出了针对不同情形组合不同模块量身定制定价模型的方法。研究成果为CDO市场定价提供了新的思路和方法,同时丰富了因子Copula方法的理论及其应用,促进了CDO定价和风险管理的发展,这些成果以论文的形式发表,并出版了一部专著。.同时本项目关于分形分布和因子Copula方法的研究成果,在投资组合管理和标准资产组合风险管理SPAN参数系统的应用中取得了很好的拓展,这些成果以软件系统呈现,获得了2部软件著作权,并已被投入试用,具有很好的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
涡度相关技术及其在陆地生态系统通量研究中的应用
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例
内点最大化与冗余点控制的小型无人机遥感图像配准
基于动态Copula的多元信用衍生产品定价
基于动态因子Copula和DCC模型的可违约公司债券定价和信用资产组合管理
基于分形与数据流挖掘技术的动态数据挖掘方法及其应用研究
金融中的动态copula理论及其应用研究