Previous studies suggested that the EPAS1 (also known as HIF2α) and its negative regulator EGLN1 are two potential key genes that playing key roles in genetic adaptation to high-altitude hypoxia in Tibetan populations on the Tibetan Plateau, but genetic mechanism that how these genes response to the hypoxia through regulating the physiological functions of key organs remains unclear. Our recent analysis identified D4E (rs186996510) and C127S (rs12097901), two nonsynonymous mutations that having surprisingly high frequency in Tibetan populations than other populations including Han Chinese. These two mutations also showed a significant positive correlation with lower hemoglobin concentration in Tibetan populations, implying that they may have important effects on the adaptation to high altitude hypoxia in Tibetans. However, the genetic mechanism that how these two potential key mutations regulate the function of EGLN1 is unknown so far. This project aims to dissect the functional effects of D4E and C127S by using endothelial cells obtained from Tibetan newborns and CRISPR/Cas9 site-directed mutation mouse model as well as gene expression profiles of the placenta tissues in Tibetan populations, we sought to reveal how Tibetans have improved their physiological functions through the EGLN1 gene and developed the ability of genetic adaptation to high-altitude hypoxic environment. The findings of this project will provide new clues for the delineating the molecular mechanism of genetic adaptation to high-altitude hypoxia in Tibetan populations on the Tibetan Plateau.
EPAS1或HIF2α及其负调控因子EGLN1可能在藏族人群对高原低氧环境的长期适应中起着关键作用,但其在低氧通路中的生物学功能及其调控机制还不清楚。我们的研究结果发现EGLN1基因上极度保守的非同义突变位点D4E和C127S在藏族人群中的频率要极显著地高于包括汉族在内的其它人群,且与藏族人群中的低血红蛋白浓度呈正相关,提示这两个突变位点可能是藏族人群对高原低氧长期适应的潜在功能位点,但是这两个位点是如何调控EGLN1基因功能的分子机制还不清楚。为了验证这两个关键功能位点的调控机制,本项目重点选择藏族新生儿脐静脉内皮细胞和Cas9定点突变小鼠的人工低氧诱导实验,并结合高原藏族人群与平原汉族人群的离体胎盘组织的表达谱分析,旨在阐明藏族人群中EGLN1基因的D4E和C127S等潜在功能位点对高原低氧环境响应的分子调控机制。研究结果对最终揭示人类对高原低氧环境适应的分子机制具有重要的科学意义。
最近的一系列研究结果表明,世代生活在青藏高原的现代藏族人群的祖先早在3万多年前就已成功定居在青藏高原,并开始发展对高原低氧极端环境的生理适应,经过一代代连续的自然选择,最终获得了对高原低氧极端环境的最佳生理适应性,但藏族人群对高原低氧环境适应的分子机制仍然是未解之谜。我们与其它实验室的前期研究结果表明,低氧诱导因子2α(HIF2α或又称EPAS1)及其负调控因子EGLN1,还有其他候选基因如GCH1和EP300等,可能在藏族人群对高原低氧环境的长期适应中起着关键作用,但其在低氧通路中的生物学功能及其调控机制仍然不清楚。本项目重点选择不同基因型藏族新生儿脐带内皮细胞和Cas9定点突变小鼠的人工低氧诱导实验,并结合高原藏族人群与平原汉族人群的离体胎盘组织的表达谱分析,旨在阐明藏族人群中低氧适应关键基因潜在功能位点对高原低氧环境响应的分子调控机制。研究结果对最终揭示人类对高原低氧环境适应的分子机制具有重要的科学意义。本项目紧紧围绕解析藏族人群高原低氧适应关键基因的功能这一核心科学问题,按计划高质量完成了原计划的全部研究任务:首次通过系统地对不同海拔藏族群体血红蛋白的非线性拟合分析创新性地提出了海拔4500米可能是藏族人群对高原低氧环境最佳适应的临界海拔,初步回答了藏族人群究竟能适应多高海拔的低氧环境的问题;通过对EPAS1、EGLN1基因的共同作用功能研究发现汉藏脐带内皮细胞在低氧1-3天转录组和染色质开放程度都发生明显改变;采用CRISPR-Cas9基因编辑技术成功构建了PHD2-D4E定点突变小鼠模型;揭示了低氧通路基因GCH1基因可能在肺动脉压调控中发挥重要作用,EP300可能通过调节一氧化氮(NO)水平来帮助藏族人群适应高原低氧环境。发表研究论文3篇。在国际会议上墙报展示交流1次。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
β-arrestin2与β-catenin作用调控Wnt/β-catenin通路影响乳腺癌多药耐药
藏族人群高原低氧适应关键基因EPAS1和EGLN1互作的分子机制及功能验证研究
解析藏族人群高原肺动脉高压的调控机制及其对高原低氧环境适应的遗传效应
藏族人群中低氧通路基因的进化模式及其对高原低氧适应的遗传贡献
藏族人群对高原低氧极端环境遗传适应的多基因互作机制研究