It was found in our previous National Youth Fund that: (1) The abnormal increase of autophagy after myocardial ischemia reperfusion injury (IR) is a trigger which can induce severe myocardial pathological changes; (2) Autophagy maybe plays a more important role than apoptosis in myocardial IR; (3) IR can induce Beclin1 and LC3 overexpression; (4) LC3 is significantly reduced by transfection of miRNA-204; (5) Bcl-2, which is the target gene of miRNA-1, can inhibit the expression of Beclin1. These preliminary data suggest that miRNA can regulate autophagy after myocardial IR. We have successful established cardiac IR model and hypoxia/reoxygenation cell culture model. On the basis of our preliminary studies, we are ready to focus on miRNA-204 and miRNA-1, and try to confirm the autophagy target genes (Selected from candidate genes Bcl-2, Beclin1,LC3) regulated by miRNA-204 and miRNA-1 through the dual fluorescence report gene system. After up-regulation and down-regulation of these miRNAs, the mRNA and protein of target gene are detected using real-time PCR and Western blot respectively, we endeavor to find the ways to effectively inhibit myocardial autophagy after IR, and ensure which one plays the role of myocardial protection. This study aims to clarify the mechanism of miRNA-204 and miRNA-1 involved in regulation of myocardial autophagy after ischemia reperfusion injury and to provide some new gene therapeutic targets for clinical myocardial protection.
通过青年项目研究发现:心肌缺血再灌注损伤(IR)后的自噬异常增多是导致心肌病理改变的重要启动因素之一;自噬可能在IR中扮演了比凋亡更重要的角色;IR可诱导自噬启动因子Beclin1和自噬标志物LC3表达增高;转染miRNA-204后LC3明显降低;miRNA-1可通过调控Bcl-2来抑制Beclin1。这些研究成果均提示,miRNA对心肌IR后的自噬有调控作用。我们拟在成功建立缺氧/复氧培养的心肌细胞模型和心脏IR模型的基础上,以miRNA-204和miRNA-1作为研究切入点,应用双萤光报告基因系统确认上述miRNA调控的自噬靶基因(重点检测Bcl-2、Beclin1和LC3)。分别在细胞水平和心脏水平调控上述miRNA,干预自噬靶基因的表达,进而抑制IR后自噬的发生,发挥心肌保护作用。本研究有望阐明上述miRNA对心肌IR后自噬的具体调控机制,为临床心肌保护提供新的思路和基因治疗靶点。
缺血性心脏病的基因治疗已成为当今生物医学领域内备受关注的研究热点。在青年面上连续资助项目基金的资助下,我们对这一热点进行了深入研究,现已发表相关文章11篇,其中SCI收录8篇。该项目所取得的学术成绩不仅仅是发表了多篇SCI论著,更重要的成果是培养了多名年轻的科研骨干,本项目先后资助培养了4名研究生。随着该项目的深入研究,又有了新发现和新创意,本项目组成员又申请到包括国基金面上项目在内的7项新的科研项目。本项目研究发现,心肌IR损伤不仅导致凋亡,还导致自噬的异常增多;而miRNA不仅调控凋亡,还能调控心肌自噬的发生。我们在缺氧/复氧培养的心肌细胞模型和IR损伤心脏模型上均证实,心肌IR损伤可以明显下调miRNA-204的表达。心肌细胞内转miRNA-204后自噬标志物LC3的蛋白表达量明显减少;而转染miRNA-204的反义序列后LC3的蛋白表达量则明显增多。这表明,调控miRNA-204可以干预IR损伤后的心肌自噬。我们还发现,Bcl-2是心肌特异性表达的miRNA-1的靶基因之一;Bcl-2不仅是凋亡相关基因,还可以通过抑制自噬启动因子Beclin1来发挥对自噬的调控作用。我们还证实,miRNA-1可以通过调控Bcl-2来抑制自噬启动因子Beclin1的表达,从而干预心肌自噬。miRNA-1参与调控了心肌IR后自噬的发生。在缺氧/复氧培养的心肌细胞中应用miRNA-1,自噬明显减少,心肌细胞活力改善。但在大鼠心脏IR损伤的动物模型上,却未能证实miRNA-1和miRNA-204对心肌自噬的调控作用。这可能是因为miRNA-1和miRNA-204在大鼠血液循环中缺乏稳定性,缓释性且无心肌的靶向性,而近年来新兴的纳米科技有望解决这个问题。我们合成了具有心肌主动靶向性的纳米基因载体,并将miRNA -1 inhibitor连接在该载体上。在体外验证了其理化特性并在细胞水平和动物水平验证了靶向纳米载体的心肌靶向效能以及靶向纳米载体负载的miRNA-1 inhibitor后对心梗小鼠的心肌保护作用。本项目为阐明miRNA在心肌IR损伤后心肌保护中的调控作用提供实验依据,这些miRNA功能的揭示可能为药物研发提供新的基因靶点,并且心肌靶向纳米载体为miRNA未来在缺血性心脏病患者中的临床应用提供了有效策略。
{{i.achievement_title}}
数据更新时间:2023-05-31
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
坚果破壳取仁与包装生产线控制系统设计
Loss of a Centrosomal Protein,Centlein, Promotes Cell Cycle Progression
适用于带中段并联电抗器的电缆线路的参数识别纵联保护新原理
Complete loss of RNA editing from the plastid genome and most highly expressed mitochondrial genes of Welwitschia mirabilis
EGCG调控自噬改善心肌缺血再灌注后无复流的机制研究
GAPDH对急性心肌缺血再灌注线粒体自噬调控机制的研究
双靶向纳米化miRNA-204治疗心肌缺血再灌注损伤的机制研究
PPAR-γ激活对肾缺血再灌注损伤后肾小管上皮细胞自噬的调控研究