高阶b族方程研究

基本信息
批准号:11401309
项目类别:青年科学基金项目
资助金额:22.00
负责人:朱敏
学科分类:
依托单位:南京林业大学
批准年份:2014
结题年份:2017
起止时间:2015-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:保进烽,胡琴,卢棪,丁伟
关键词:
弱解解的爆破局部适定性b族方程
结项摘要

This proposal focuses on wave propagation modeled by the higher order b-family equation, the two-component b-family system and the short-pulse equation. The higher order b-family equation and the two-component b-family system are the new models for the propagation of shallow-water waves, the short-pulse equation is a model of the ultra-short light pulses in silica optical fibres. So they have great meaning on theory and in practice. Firstly, it is considered that the geometric investigation on the higher order b-family equation and it is shown that the equation can be realized as an Euler equation on the Lie group. Then, applying Kato's theory and the method of the Littlewood-Paley decomposition for the initial-value problem of the periodic higher order b-family equation, the existence and uniquess of the strong global solutions are established. Moreover, the existence, uniquness and continuous for the weak solutions of the two-component b-family system are considered. Forthermore, it is shown that the features for the b-family equation persist in the two-component b-family system. Finally, the existence and uniquess of the weak solutions for the short-pulse equation are proved by the method of a suitable priori estimates together with an application of the compensated compactness.

本项目主要研究高阶b族方程,二维b族方程组及其short-pulse方程中波的传播问题。高阶b族方程和二维b族方程组为新型的浅水波传播模型,而short-pulse方程是石英光纤中的超短光脉冲模型。因此该研究具有重要的应用背景和理论价值。本项目首先,从几何角度研究高阶b族方程,证明高阶b族方程对应李群上的欧拉方程。然后,用Kato理论和Littlewood-paley分解方法研究高阶b族方程周期初值问题整体强解的存在唯一性。进一步考虑二维b族方程组弱解的存在唯一和连续性,同时将b族方程的性质推广到二维b族方程组中。最后,运用先验估计结合补偿紧性的方法证明short-pulse方程弱解的存在唯一性。

项目摘要

本项目主要研究四个新型的浅水波模型的解的传播性质。第一个模型是带有线性色散项的周期modified Camassa-Holm方程。我们首先研究了当线性色散项为零时,运用解和解的梯度之间的比率关系得到解在有限时间爆破的结果。进一步运用解的连续性和通过适当的变量变换,可以得到当线性色散项的参数为负数时解的爆破准则,并证明当初动量的密度下有界于某个与线性色散项和初值相关的常数时会发生解的爆破。最后研究了当线性色散项大于零时,初值的斜率充分大会引起解的爆破。第二个模型是带有线性色散项的generalized modified Camassa-Holm方程。我们通过寻找新的守恒律和 的有界性得到了解的爆破机制。第三个模型是modified b-family方程。我们通过Riccati型微分不等式的带到了解的爆破,并在weighted空间中证明了解的延迟性质。第四个模型是generalized two-component Camassa-Holm方程组。运用解的单调性和矫顽性研究得出该方程组的光滑孤立波在能量空间中是稳定的。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects

The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects

DOI:10.3389/fcell.2021.735374
发表时间:2021
2

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

DOI:10.19596/j.cnki.1001-246x.8419
发表时间:2022
3

掘进工作面局部通风风筒悬挂位置的数值模拟

掘进工作面局部通风风筒悬挂位置的数值模拟

DOI:
发表时间:2018
4

Bousangine A, a novel C-17-nor aspidosperma-type monoterpenoid indole alkaloid from Bousigonia angustifolia

Bousangine A, a novel C-17-nor aspidosperma-type monoterpenoid indole alkaloid from Bousigonia angustifolia

DOI:10.1016/j.fitote.2020.104491
发表时间:2020
5

PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制

PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制

DOI:
发表时间:2021

朱敏的其他基金

批准号:59671028
批准年份:1996
资助金额:18.00
项目类别:面上项目
批准号:31400775
批准年份:2014
资助金额:24.00
项目类别:青年科学基金项目
批准号:51501164
批准年份:2015
资助金额:21.00
项目类别:青年科学基金项目
批准号:81860430
批准年份:2018
资助金额:35.00
项目类别:地区科学基金项目
批准号:81401864
批准年份:2014
资助金额:23.00
项目类别:青年科学基金项目
批准号:31501607
批准年份:2015
资助金额:22.00
项目类别:青年科学基金项目
批准号:40872020
批准年份:2008
资助金额:46.00
项目类别:面上项目
批准号:11801009
批准年份:2018
资助金额:23.00
项目类别:青年科学基金项目
批准号:31901433
批准年份:2019
资助金额:24.00
项目类别:青年科学基金项目
批准号:50371027
批准年份:2003
资助金额:30.00
项目类别:面上项目
批准号:50071022
批准年份:2000
资助金额:18.00
项目类别:面上项目
批准号:51231003
批准年份:2012
资助金额:290.00
项目类别:重点项目
批准号:40332017
批准年份:2003
资助金额:140.00
项目类别:重点项目
批准号:61701368
批准年份:2017
资助金额:25.00
项目类别:青年科学基金项目
批准号:81400393
批准年份:2014
资助金额:25.00
项目类别:青年科学基金项目
批准号:39900159
批准年份:1999
资助金额:13.00
项目类别:青年科学基金项目
批准号:79770056
批准年份:1997
资助金额:8.50
项目类别:面上项目
批准号:70472081
批准年份:2004
资助金额:10.00
项目类别:面上项目
批准号:81904238
批准年份:2019
资助金额:20.00
项目类别:青年科学基金项目
批准号:70771092
批准年份:2007
资助金额:19.50
项目类别:面上项目
批准号:50631020
批准年份:2006
资助金额:200.00
项目类别:重点项目
批准号:51302170
批准年份:2013
资助金额:25.00
项目类别:青年科学基金项目
批准号:31301258
批准年份:2013
资助金额:23.00
项目类别:青年科学基金项目
批准号:50971060
批准年份:2009
资助金额:41.00
项目类别:面上项目
批准号:61401087
批准年份:2014
资助金额:27.00
项目类别:青年科学基金项目
批准号:28970204
批准年份:1989
资助金额:3.00
项目类别:面上项目
批准号:61301011
批准年份:2013
资助金额:28.00
项目类别:青年科学基金项目
批准号:61771134
批准年份:2017
资助金额:16.00
项目类别:面上项目
批准号:30771434
批准年份:2007
资助金额:26.00
项目类别:面上项目
批准号:41530102
批准年份:2015
资助金额:295.00
项目类别:重点项目
批准号:51005242
批准年份:2010
资助金额:20.00
项目类别:青年科学基金项目
批准号:11205162
批准年份:2012
资助金额:30.00
项目类别:青年科学基金项目
批准号:70272070
批准年份:2002
资助金额:5.50
项目类别:面上项目
批准号:58901420
批准年份:1989
资助金额:3.50
项目类别:青年科学基金项目
批准号:81100624
批准年份:2011
资助金额:22.00
项目类别:青年科学基金项目
批准号:39570804
批准年份:1995
资助金额:9.00
项目类别:面上项目
批准号:11901188
批准年份:2019
资助金额:24.10
项目类别:青年科学基金项目
批准号:61504157
批准年份:2015
资助金额:20.00
项目类别:青年科学基金项目
批准号:59541008
批准年份:1995
资助金额:3.00
项目类别:专项基金项目
批准号:29905003
批准年份:1999
资助金额:12.00
项目类别:青年科学基金项目
批准号:40930208
批准年份:2009
资助金额:185.00
项目类别:重点项目
批准号:71704013
批准年份:2017
资助金额:18.00
项目类别:青年科学基金项目

相似国自然基金

1

与高阶矩阵谱问题相联系的孤子方程族代数几何解研究

批准号:11801144
批准年份:2018
负责人:王辉
学科分类:A0308
资助金额:25.00
项目类别:青年科学基金项目
2

b-族非线性浅水波方程尖峰子解的研究

批准号:11301389
批准年份:2013
负责人:周羚君
学科分类:A0308
资助金额:22.00
项目类别:青年科学基金项目
3

高阶非线性波动方程

批准号:11171311
批准年份:2011
负责人:王书彬
学科分类:A0305
资助金额:50.00
项目类别:面上项目
4

非线性高阶发展方程

批准号:10671182
批准年份:2006
负责人:陈国旺
学科分类:A0307
资助金额:26.00
项目类别:面上项目