Landfilling process has been considered as the main final disposal alternative with respect to its cost-effective and environment friendly features for MSW treatment, however this process has been facing serious challenges arising from its long maintenance period, difficult pollution control especially atmosphere pollution and large area possession. In the future landfilling process should be developed with following features: more effective pollution control, circulated landfill unit spaces, and sustainable reuse technologies, among which economical and efficient rapid stabilization technology would be crucial. Then micro-unit bioreactor landfill process has been put forward based on the conception of space to time conversion. This research is based on the micro-unit bioreactor landfill technology, namely constructing micro-unit structure by sequent covering, in which the space efficiency is changed, to study the transformation regularity of water or vapor conductivity within landfill structure and stabilization rate constant of MSW. Then the basic theory relative to micro-unit bioreactor landfill would be established gradually. Simulated conventional and micro-unit landfill bioreactor would be set up to study its stabilization proceeding from the whole procedure and from the perspective of leachate, solid waste and landfill gas, and an index called space to time conversion efficiency, namely the MSW volume disposed to stable state by unit time and unit landfill volume, was utilized to quantify the speeded up rate of stabilization process in micro-unit landfill bioreactor . Finally this research work should provide important technological support to promote and popularize the application of recycled and sustainable landfilling system.
生活垃圾填埋技术作为经济适用、环境友好的主要最终处理技术,面临“管理周期长,污染控制困难,占用大量土地”带来的发展瓶颈。面向未来的填埋技术要求“污染控制更有效,填埋空间利用可循环,资源化技术可持续”,其中经济高效的快速稳定化技术是解决问题的关键,因此提出基于“时空转换”理念的微元生物反应器填埋技术。本项目围绕微元生物反应器填埋技术架构,即批次覆盖技术形成微元填埋堆体结构并导致空间效率改变的条件下,水气传导系数的变化规律以及稳定化速率常数的变化规律,逐步构建微元生物反应器填埋技术的理论基础。利用模拟传统生物反应器填埋和微元生物反应器填埋实验装置开展全方位(气固液)和全过程的稳定化进程研究,运用时空综合效率指数η,即单位时间单位容积处理达到稳定化程度的生活垃圾的体积,对微元生物反应器填埋技术快速稳定化水平进行量化评价,为循环可持续填埋及资源化技术体系的建立提供重要的技术支撑。
针对填埋技术发展停滞、开放作业环境恶劣且大气污染不可控、占用土地不可循环等问题,提出腐殖土批次覆盖、“厌氧+好氧”多元稳定的微元生物反应器填埋技术方案。通过对比0.1MPa及0.2MPa压载条件下微元/常规生物反应器的水气传导性能,研究水气传导性能改变条件下厌氧稳定及厌氧-好氧多元稳定过程中微元/常规反应器气液固三相演变规律及稳定化过程动力学参数,并通过气体传导性能和容积率单因素实验验证气水传导性能及填埋容积率对微元反应器厌氧稳定速率的影响,最终计算微元生物反应器时空转换效率并定量表征其时空综合效率。研究表明,微元反应器在提升水气传导性能方面具有明显优势,腐殖土的吸附和缓冲作用为产甲烷菌提供适宜生长环境,微元生物反应器厌氧迟滞期明显缩短,堆体稳定化进程明显加快,对填埋场空间利用效率更高,且气水传导性能及填埋容积率均显著影响微元填埋厌氧稳定化效率。根据本研究成果,可为从根本上解决现有卫生填埋技术存在问题的循环可持续填埋技术体系提供关键技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
监管的非对称性、盈余管理模式选择与证监会执法效率?
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
黄河流域水资源利用时空演变特征及驱动要素
城市生活垃圾可持续的填埋处理及渗沥液控制技术
污泥-生活垃圾混合填埋体强度演化及灾变机理研究
新型AE/AN生活垃圾生物填埋工艺开发及机理数值模拟研究
生活垃圾填埋过程腐殖酸电子转移能力演变特征及其机制