高负载量镍钴基纳米阵列超电容电极的原位碱转化研究

基本信息
批准号:51862002
项目类别:地区科学基金项目
资助金额:40.00
负责人:王凡
学科分类:
依托单位:广西大学
批准年份:2018
结题年份:2022
起止时间:2019-01-01 - 2022-12-31
项目状态: 已结题
项目参与者:许雪棠,叶晴岚,李洁,邵雪村,邹文茹,杨天怡,季璐璐,龙俊禧
关键词:
电荷存储性能原位碱转化镍钴基氢氧化物高负载量碱式碳酸盐
结项摘要

Three-dimensional free-standing Ni/Co-based nanoarray electrodes grown on carbon cloth substrate poss unsatisfactory behavior in charge-storage performances due to their low surface area and electrical conductivity, although the smart shape in nanowire arrays is formed. Moreover, the direct growth of active material with a large mass loading on carbon fibers is difficult because of the hydrophobic nature. In-situ alkali conversion of Ni/Co carbonate hydroxide electrode is a facile way to enhance the electrochemical performance with low operation cost. In our previous work, a“two-step”growth route was adopted to achieve Ni-Co carbonate hydroxide nanowire arrays, while an electrochemical pre-activation before the second hydrothermal step was involved to increase the mass loading od active materials on the surface of carbon cloth. Then, in-situ alkali conversion is used to boost the specific and areal capacity by converting Ni-Co carbonate hydroxide nanowires to hydroxide nanowire-supported nanoplate arrays in an alkaline solution. However, the elaborate synthetic way to obtain the advanced precursors of Ni/Co-based nanoarrays, and to increase the conductivity of active materials which is critical for the charge transport kinetics, has not been identified yet. This project will do more work to concern the effect of electrochemical pre-activation on the growth and the alkali conversion of Ni/Co based nanoarrays with high mass loading. Meanwhile, electronic conductivity and surface activity of electrodes can be enhanced via doping effect and chemical reduction, resulting in the high capacity of Ni/Co based hydroxide nanoarrays. The working mechanism and the application potential for in-situ conversion will be illustrated, which provides a novel knowledge for the elaborate design of free-standing electrodes with high-performance.

导电碳布表面生长的三维“自支撑”镍钴基复合化合物纳米线阵列具有良好的结构特征,但局限于比表面积小、电导率低的缺点,其超电容性能并不理想。并且,由于导电碳布基底亲水性较差,在其表面很难实现活性物质的高负载量。碱式碳酸盐电极的原位碱转化是一种成本低、操作灵活的电容量提高手段。在前期工作中,我们通过电化学预活化辅助的“二次生长”过程,实现了负载量的有效提升。所得电极经过原位碱转化,质量和面积比容量都有较大增长。如何获得高负载量镍钴纳米阵列前驱体的合理结构,以及如何提升电极导电能力,目前仍有待探究。在本项目中,我们将深入地研究电化学预活化对所形成纳米阵列以及其后期碱转化过程的影响,实现差异化电极的制备,并希望通过掺杂效应和化学还原方式,提高电极的电导率和表面活性位点数量,从而有效提高电极的电荷存储性能。项目将系统阐述碱转化技术的应用范围及作用机制,为设计高性能“自支撑”电极提供新思路。

项目摘要

高负载量电极是实现超级电容器高容量和高能量密度输出的关键。在本项目中,我们借助表面修饰和电活化方式,提高了镍钴碱式碳酸盐和NiCo LDH等电极材料在导电碳布表面的负载量;借助“差异化”沉积方式,利用氢氧化物在不同溶剂中的沉淀方式差异,制备了多孔纳米结构阵列,增加纳米阵列内部的电解质传递通道数量,提高其活性物质利用率;借助“碱转化”方式,通过阴离子交换手段,减少层状氢氧化物内部的大半径阴离子数量,提高OH-离子在电极材料内的迁移容量;还通过改变金属离子的配位环境,实现了金属离子的价态变化,增强金属离子间的电荷转移作用,实现协同效应增强;借助“差异化”沉积理念,获得了高负载量和高容量的双金属尖晶石型硫化物阵列电极。在对镍钴基纳米阵列结构的生长行为深入认识的基础上,进一步拓展“碱转化”手段的应用领域,在泡沫镍网表面生长镍钴基纳米片阵列,探讨了其结构差异对电荷存储性能的影响,为更深入认识超级电容器工作机制提供借鉴。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
2

特斯拉涡轮机运行性能研究综述

特斯拉涡轮机运行性能研究综述

DOI:10.16507/j.issn.1006-6055.2021.09.006
发表时间:2021
3

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

DOI:10.19701/j.jzjg.2015.15.012
发表时间:2015
4

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

DOI:10.3969/j.issn.1002-0268.2020.03.007
发表时间:2020
5

氯盐环境下钢筋混凝土梁的黏结试验研究

氯盐环境下钢筋混凝土梁的黏结试验研究

DOI:10.3969/j.issn.1001-8360.2019.08.011
发表时间:2019

王凡的其他基金

批准号:81500316
批准年份:2015
资助金额:18.00
项目类别:青年科学基金项目
批准号:21907036
批准年份:2019
资助金额:26.00
项目类别:青年科学基金项目
批准号:30930030
批准年份:2009
资助金额:185.00
项目类别:重点项目
批准号:90503011
批准年份:2005
资助金额:58.00
项目类别:重大研究计划
批准号:81902680
批准年份:2019
资助金额:19.00
项目类别:青年科学基金项目
批准号:41049907
批准年份:2010
资助金额:300.00
项目类别:专项基金项目
批准号:28870179
批准年份:1988
资助金额:3.00
项目类别:面上项目
批准号:81630045
批准年份:2016
资助金额:275.00
项目类别:重点项目
批准号:40576016
批准年份:2005
资助金额:39.00
项目类别:面上项目
批准号:90103018
批准年份:2001
资助金额:30.00
项目类别:重大研究计划
批准号:39570618
批准年份:1995
资助金额:7.00
项目类别:面上项目
批准号:11704302
批准年份:2017
资助金额:19.00
项目类别:青年科学基金项目
批准号:40076006
批准年份:2000
资助金额:21.00
项目类别:面上项目
批准号:30870728
批准年份:2008
资助金额:40.00
项目类别:面上项目
批准号:81902774
批准年份:2019
资助金额:20.00
项目类别:青年科学基金项目
批准号:41304008
批准年份:2013
资助金额:25.00
项目类别:青年科学基金项目
批准号:19275023
批准年份:1992
资助金额:2.60
项目类别:面上项目
批准号:41049906
批准年份:2010
资助金额:360.00
项目类别:专项基金项目
批准号:81341011
批准年份:2013
资助金额:10.00
项目类别:专项基金项目
批准号:11701477
批准年份:2017
资助金额:23.00
项目类别:青年科学基金项目
批准号:U1504303
批准年份:2015
资助金额:27.00
项目类别:联合基金项目
批准号:21163001
批准年份:2011
资助金额:52.00
项目类别:地区科学基金项目
批准号:49706066
批准年份:1997
资助金额:14.00
项目类别:青年科学基金项目
批准号:81603687
批准年份:2016
资助金额:18.00
项目类别:青年科学基金项目
批准号:30640067
批准年份:2006
资助金额:10.00
项目类别:专项基金项目
批准号:19675018
批准年份:1996
资助金额:7.00
项目类别:面上项目
批准号:40940006
批准年份:2009
资助金额:20.00
项目类别:专项基金项目
批准号:41603073
批准年份:2016
资助金额:19.00
项目类别:青年科学基金项目
批准号:10375030
批准年份:2003
资助金额:20.00
项目类别:面上项目
批准号:11501282
批准年份:2015
资助金额:18.00
项目类别:青年科学基金项目
批准号:41730534
批准年份:2017
资助金额:310.00
项目类别:重点项目

相似国自然基金

1

柔性SiC纳米阵列电极材料的制备及其超电容特性研究

批准号:51472128
批准年份:2014
负责人:陈友强
学科分类:E0204
资助金额:83.00
项目类别:面上项目
2

基于碳纳米管纱线微波法原位可控生长纳米镍钴硒化物构建柔性超级电容器

批准号:51702369
批准年份:2017
负责人:王秋凡
学科分类:E0203
资助金额:24.00
项目类别:青年科学基金项目
3

基于纳米结构的钴(镍)氧化物/碳纤维纸复合薄膜电极的可控制备及电容性能研究

批准号:51502206
批准年份:2015
负责人:韩燕
学科分类:E0208
资助金额:20.00
项目类别:青年科学基金项目
4

三元钴镍硫属化物纳米晶及其衍生材料的合成与超电容性能研究

批准号:U1404203
批准年份:2014
负责人:杜卫民
学科分类:B0502
资助金额:30.00
项目类别:联合基金项目