The next generation flexible supercapacitors (ECs) with excellent performances have demonstrated significant potential for future lightweight and portable electronics. However, lots of electrode materials are still hard to meet the requirements for practical use (e.g. high specific capacity, long cycling stability, high energy density and high power density) that has become a key factor restricting the development of flexible ECs. This project is to choose the third-generation wide-band gap semiconductor, SiC, as the research subject, and the pyrolysis of the organic precursor as a synthesis strategy for the growth of flexible SiC nanostructure-arrays on the carbon fabric. We will try to realize the design and preparation of the high-performance flexible SiC (and SiC/ MnO2) ECs that are enhanced by three effects: the increased high surface area (nanostructures), doping (band regulation) and a synergistic effect (the additional MnO2 pseudocapacitance), via accurately tailoring doping and structures of SiC nanostructures. Specifically, we will deeply analyze the experimental results to reveal the intrinsic relationship between various factors including the SiC nanoarray structure, doping, the thickness of the MnO2 layer, strain, temperature, as well as the device performance, with the emphasis on the classification of the electrochemical energy storage mechanism of the flexible SiC and SiC/ MnO2 ECs. Finally, we will reveal scientific problems such as what are the key factors and regulation approaches in determining the superior properties of the flexible SiC NW based ECs. The implementation of this project is expected to enrich and develop the basic theoretical studies of the flexible supercapacitors. The relevant work will also provide some valuable basic data and key technologies for the fundamental research and fabrication of the flexible SiC NW based ECs.
高性能下一代柔性超级电容器(ECs)在未来可移植性、轻便化与便携性电子产品等领域具有广阔的应用前景。然而目前大量电极材料性能(如比容量、循环寿命、能量密度和功率密度)尚难满足实际应用要求,成为制约其发展的关键因素。本项目拟以第三代宽带隙半导体SiC为研究对象,以碳布为衬底,以有机硅前驱体热解为SiC 纳米阵列生长工艺,通过结构的精细控制与掺杂,实现增加比表面积(纳米结构)、掺杂改性(能带调控)、协同效应(MnO2附加赝电容)三种方法协同强化,性能优异的柔性SiC EC的设计与制备。项目工作将系统评价柔性SiC纳米阵列结构-掺杂-应变-温度-性能等内在关联,阐明SiC 纳米阵列结构电化学能量储存的工作机理,从而最终揭示决定EC性能优异的关键因素和调控途经等科学问题。项目的实施将丰富和发展EC基础理论研究,相关工作将为SiC纳米线EC的基础研究和器件化提供一定的基础数据和关键技术。
高性能下一代柔性超级电容器(ECs)在未来可移植性、轻便化与便携性电子产品等领域具有广阔的应用前景。然而目前大量电极材料性能(如比容量、循环寿命、能量密度和功率密度)尚难满足实际应用要求,成为制约其发展的关键因素。本项目以第三代宽带隙半导体SiC为研究对象,以碳布为衬底,以有机硅前驱体热解为SiC 纳米阵列生长工艺,通过结构的精细控制与掺杂,制备了N可控掺杂的SiC纳米阵列;以此为基础,组装了具有超快电容响应、高功率密度、长循环寿命、性能优异的柔性SiC纳米阵列ECs。采用电化学生长工艺,并结合上述SiC热解生长工艺制备了一种新的,性能优异的 N掺杂SiC/MnO2核壳纳米线阵列电极材料;组装了基于柔性N掺杂SiC/MnO2,且兼具有快速响应、高功率和能量密度的性能优异的ECs。项目工作系统评价了柔性SiC 和SiC/MnO2纳米阵列结构-掺杂-应变-性能等内在关联,探讨了SiC和SiC/MnO2纳米阵列结构电化学能量储存的工作机理。课题进展4年来,发表论文6篇,其中SCI/EI论文4篇,授权发明专利1项,申请发明专利2项。相关工作为SiC纳米线ECs的基础研究和器件化提供一定的基础数据和关键技术。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
上转换纳米材料在光动力疗法中的研究进展
自组装短肽SciobioⅡ对关节软骨损伤修复过程的探究
强震作用下铁路隧道横通道交叉结构抗震措施研究
拉应力下碳纳米管增强高分子基复合材料的应力分布
多孔纳米碳柔性电极的层次化构建与超电容特性研究
新型轻质柔性石墨烯片-碳纳米管基复合膜电极材料的设计、可控制备及其超电容特性研究
石墨烯量子点基复合电极材料的设计、制备及其超电容特性研究
有序纳米阵列的调控制备及其超级电容特性研究