High flexibility, high capacitance and high energy density are crucial challenges for developing miniaturized and wearable supercapacitor. In this study, we focus on controllable in situ synthesis of high electrochemical properties Ni-Co selenide on the carbon nanotube yarns by microwave method, and then fabricate flexible, wearable supercapacitor. Ni-Co selenide can provide a high capacitance and high energy density, carbon nanotube yarns provide high flexibility, high strength and wearable features for supercapacitors. The effects of main factors on electrochemical properties will be studied in details, including the ratio of Ni/Co, morphology, crystal structure, the structure (linear density, pore density) of carbon nanotube yarns and the interface interaction between Ni-Co selenide and carbon nanotube. Controllability of morphology and crystal structure of Ni-Co selenide will be researched as well as the growth mechanism of Ni-Co selenide on carbon nanotube yarns. Through above research, we will obtain a flexible yarn supercapacitor with high specific capacitance, high power density and high energy density. The results not only can provide theoretical and experimental guidance for fabricating miniaturized, flexible and wearable electronics, and but also serve as a basis for their application in energy storage and smart textiles. This study has an important theoretical and practical significance for the development of Ni-Co selenide and supercapacitors.
高电容和高能量密度的柔性超级电容器的设计制备是其作为电源应用的关键科学问题,本项目拟采用碳纳米管(CNT)纱线原位可控生长纳米镍钴硒化物来构建柔性好、电化学性能优异的超级电容器,纳米镍钴硒化物实现超级电容器的高电容及高能量密度,CNT纱线赋予超级电容器的高柔性、高强度和可穿戴特性。研究镍钴硒化物中的金属比例、形貌、晶体结构、CNT纱线的结构(线密度、孔容)、镍钴硒化物与CNT纱线的界面相互作用等因素对超级电容器的电化学性能的影响规律,探索镍钴硒化物的形貌、晶体结构的可控性及在CNT表面的生长机理。将获得高电容、高功率密度和高能量密度的柔性CNT纱线超级电容器及影响其电化学性能的相关规律和镍钴硒化物纳米材料的生长机理,对其在新能源器件和智能纺织品领域的应用提供规律性认识和理论及实验指导,对实现超级电容器及电子元器件微型化、柔性化和器件可穿戴化的发展具有重要的理论和实际意义。
本项目采用碳纳米管(CNT)纱线/薄膜原位可控生长纳米镍钴硒化物构建了柔性好、电化学性能优异的超级电容器,纳米镍钴硒(氧)化物实现了超级电容器的高电容及高能量密度,CNT纱线/薄膜赋予了超级电容器的高柔性、高强度和可穿戴特性。并且研究了镍钴硒化物中的金属比例、形貌、晶体结构、CNT纱线/薄膜的结构、镍钴硒化物与CNT纱线/薄膜的界面相互作用等因素对超级电容器的电化学性能的影响规律,探索了镍钴硒(氧)化物的形貌、晶体结构的可控性及在CNT表面的生长机理。研究了影响柔性CNT纱线/薄膜超级电容器的电化学性能的相关规律及镍钴硒(氧)化物纳米材料的生长机理。此外,本项目研究了金属有机框架为模板衍生的镍钴硒化物的电化学性能。所得结果对新能源器件和智能纺织品领域的应用提供规律性认识和理论及实验指导,对实现超级电容器及电子元器件微型化、柔性化和器件可穿戴化的发展具有重要的理论和实际意义。基于以上研究成果已发表9篇SCI论文、1篇英文专著及2篇授权专利。
{{i.achievement_title}}
数据更新时间:2023-05-31
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
面向云工作流安全的任务调度方法
物联网中区块链技术的应用与挑战
金属硒化物异质结柔性复合电极材料的可控设计及在超级电容器器件中的应用
基于金属氮化物/碳复合纳米纤维构建高性能柔性非对称超级电容器
镍、钴、钼氧化物/硫化物超级电容器电极材料可控制备及其电化学性能调控研究
聚吡咯/取向碳纳米管构建柔性超级电容器的结构设计和性能研究