The unique zero gravity and low air resistance in spacecraft system provides favorable conditions for establishing flywheel energy storage systems with high reliability, high transition efficiency, high power density in space power system. The high speed tendency of motor system is essential for improving the power density of flywheel energy storage system on spacecraft, the corresponding rotor loss and the heat dissipation mechanism of high-speed motor in vacuum environment is the main content of this project: 1. Design the system level simulation based on the spacecraft flywheel energy storage power electronic converter topology and the motor model. According to the three dimensional transient physical field coupling calculation theory, the rotor eddy current loss of high-speed permanent magnet motor is analyzed. 2. Set the motor internal loss as discrete heat source, considering the coolant flow characteristics and its interaction of the temperature field distribution, to study the rotor temperature field distribution in time and space dimension. 3. Build the rotor temperature field dynamic monitoring system of high speed permanent magnet motor, to explore the interaction and the diffusion mechanism of the internal heat flow of high speed motor under complicated electromagnetic load. In this project, the nonlinear relationship of multi-physical fields and coupling mechanism in flywheel energy storage system are to be induced, the corresponding fast calculation and analysis method is to be concluded, to support the design optimization of rotor heat dissipation structure in high speed motor for flywheel energy storage system on spacecraft.
航天器系统中特有的失重、低风阻环境为通过高速飞轮技术构建航天电源系统中高可靠性、高转换效率、高功率密度储能装置提供了有利条件。电机系统的高速化是提升航天飞轮储能系统功率密度的关键,与之相关的真空环境下飞轮储能高速电机转子损耗与散热机理是本项目的主要内容。本项目研究工作包括:①基于航天器飞轮储能的电力电子变换器拓扑,联合电机模型进行系统仿真。根据三维瞬态多物理场耦合计算理论,对高速永磁电机转子涡流损耗进行分析。②以电机内部损耗作为离散热源,结合冷却介质流体特性与温度场分布之间的互动关系,研究电机转子温度场静动态分布规律。③构建适用于高速永磁电机转子温度场的动态监测系统,探究复杂电磁负荷下高速电机内部热流的相互作用和扩散机理。通过项目的研究,归纳出飞轮储能系统内多物理场之间的非线性关系与耦合机理,构建相应的快速计算与分析方法,为航天器飞轮用高速电机散热结构的优化设计提供支撑。
航天器系统中特有的失重、低风阻环境为通过高速飞轮技术构建航天电源系统中高可靠性、高转换效率、高功率密度储能装置提供了有利条件。电机系统的高速化是提升航天飞轮储能系统功率密度的关键,与之相关的真空环境下飞轮储能高速电机转子损耗与散热机理是本项目的主要内容。本项目研究工作包括:①基于航天器飞轮储能的电力电子变换器拓扑,联合电机模型进行系统仿真。根据三维瞬态多物理场耦合计算理论,对高速永磁电机转子涡流损耗进行分析。②以电机内部损耗作为离散热源,结合冷却介质流体特性与温度场分布之间的互动关系,研究电机转子温度场静动态分布规律。③构建适用于高速永磁电机转子温度场的动态监测系统,探究复杂电磁负荷下高速电机内部热流的相互作用和扩散机理。通过项目的研究,归纳出飞轮储能系统内多物理场之间的非线性关系与耦合机理,构建相应的快速计算与分析方法,为航天器飞轮用高速电机散热结构的优化设计提供支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
环形绕组无刷直流电机负载换向的解析模型
夏季极端日温作用下无砟轨道板端上拱变形演化
能谱联合迭代重建在重度肝硬化双低扫描中的应用价值
分层地质类材料靶体抗超高速侵彻模型实验
太阳能光伏光热建筑一体化(BIPV/T)研究新进展
一种飞轮储能用双定子多自由度多功能永磁同步电机研究
高速飞轮储能用高速发电/电动机及其能耗的研究
飞轮储能用全距绕组双凸极电动/发电机
飞轮储能用新型磁悬浮无轴承异步电机系统研究