非线性优化问题的二阶和高阶对偶性

基本信息
批准号:11271391
项目类别:面上项目
资助金额:70.00
负责人:杨新民
学科分类:
依托单位:重庆师范大学
批准年份:2012
结题年份:2016
起止时间:2013-01-01 - 2016-12-31
项目状态: 已结题
项目参与者:唐万梅,高英,赵克全,唐莉萍,吕佳
关键词:
不可微性可微性二阶和高阶对偶模型非线性优化问题对偶定理
结项摘要

This project aims to study second and higher order duality in nonlinear optimization problems, producing new theory and improvement of existing results on second and higher order dual models and duality theory in nonlinear multiobjective optimization, nonlinear minimax optimization and fractional optimization. Special emphases are: second and higher order converse duality in nonlinear optimization problems; unified second and higher order dual models and duality theory in nonlinear optimization problems; second and higher order duality with cone constrained optimization problems; generalized second derivative and its applications to second order duality in nonlinear optimization problems; and second and higher order duality in nonlinear optimization problems under approximation solutions. Implementation and completion of this project will result in novel new theory enriching nonlinear optimization theory, in particular, duality theory. This new theory will provide fundamental theoretical basis for the design of nonlinear optimization algorithms.

本项目研究非线性优化问题的二阶和高阶对偶性,主要内容是丰富和完善非线性多目标优化、非线性极大极小优化和分式优化的二阶和高阶对偶模型与对偶理论,特别重点研究非线性优化问题二阶和高阶逆对偶性;多类非线性优化问题二阶或高阶模型的统一性及相应对偶性;锥约束优化问题的二阶和高阶对偶性;广义二阶导数在非线性优化问题二阶对偶理论中的应用以及非线性优化问题近似解下的二阶和高阶对偶性等。本项目的实施和完成不仅能够丰富非线性优化理论,特别是对偶理论,而且能够为非线性优化新算法的设计提供理论依据。

项目摘要

本项目研究非线性优化问题的二阶和高阶对偶性,我们按照预期计划主要研究了非线性多目标优化问题二阶和高阶对偶模型中的逆对偶性;研究了可微和不可微锥约束多目标优化问题二阶和高阶对偶性;研究了分式多目标优化问题的二阶和高阶对偶性等。从2013年1月至2016年12月四年间,本项目取得了丰富的研究成果,发表了20多篇SCI论文,包括在中国科学(中,英文),Mathematics of Operations Research和Optimization等刊物,同时项目所取得成果得到国内外同行的大量引用和好评,且项目负责人获得2014年度重庆市自然科学一等奖。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

监管的非对称性、盈余管理模式选择与证监会执法效率?

监管的非对称性、盈余管理模式选择与证监会执法效率?

DOI:
发表时间:2016
3

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
4

宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响

宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响

DOI:10.7606/j.issn.1000-7601.2022.03.25
发表时间:2022
5

中国参与全球价值链的环境效应分析

中国参与全球价值链的环境效应分析

DOI:10.12062/cpre.20181019
发表时间:2019

杨新民的其他基金

批准号:10771228
批准年份:2007
资助金额:27.00
项目类别:面上项目
批准号:11326029
批准年份:2013
资助金额:10.00
项目类别:数学天元基金项目
批准号:11431004
批准年份:2014
资助金额:280.00
项目类别:重点项目
批准号:11726006
批准年份:2017
资助金额:18.00
项目类别:数学天元基金项目
批准号:19401040
批准年份:1994
资助金额:2.60
项目类别:青年科学基金项目
批准号:11926409
批准年份:2019
资助金额:18.00
项目类别:数学天元基金项目
批准号:11626003
批准年份:2016
资助金额:15.00
项目类别:数学天元基金项目
批准号:12026255
批准年份:2020
资助金额:20.00
项目类别:数学天元基金项目
批准号:19771092
批准年份:1997
资助金额:6.50
项目类别:面上项目
批准号:10471159
批准年份:2004
资助金额:19.00
项目类别:面上项目
批准号:10171118
批准年份:2001
资助金额:13.00
项目类别:面上项目
批准号:30971687
批准年份:2009
资助金额:32.00
项目类别:面上项目
批准号:11526004
批准年份:2015
资助金额:16.00
项目类别:数学天元基金项目
批准号:11526003
批准年份:2015
资助金额:16.00
项目类别:数学天元基金项目
批准号:10831009
批准年份:2008
资助金额:120.00
项目类别:重点项目
批准号:12026425
批准年份:2020
资助金额:20.00
项目类别:数学天元基金项目

相似国自然基金

1

非线性二阶锥优化与互补问题的FB-型算法研究

批准号:10901058
批准年份:2009
负责人:潘少华
学科分类:A0405
资助金额:16.00
项目类别:青年科学基金项目
2

向量优化问题近似解的标量化与对偶性研究

批准号:11701057
批准年份:2017
负责人:唐莉萍
学科分类:A0405
资助金额:25.00
项目类别:青年科学基金项目
3

高阶非线性发展方程的高能问题

批准号:11101102
批准年份:2011
负责人:徐润章
学科分类:A0307
资助金额:24.00
项目类别:青年科学基金项目
4

非线性高阶发展方程中的若干问题

批准号:11271336
批准年份:2012
负责人:杨志坚
学科分类:A0307
资助金额:70.00
项目类别:面上项目