The development of hydrogen storage materials with excellent performance is the key to safe and efficient storage and transportation of hydrogen. AlH3 has a high hydrogen storage density and excellent hydrogen desorption performance, but the development of AlH3-based hydrogen storage material has been hindered by the difficulty in material synthesis and poor reversibility. Therefore, solving the problem of the harsh reaction conditions of aluminum absorbing hydrogen to form AlH3 and improving the reversible hydrogen absorption and desorption performance of AlH3 have important scientific significance for the development of hydrogen storage materials. This project intends to achieve improved reversible hydrogen absorption and desorption performance of AlH3 as well as thermodyanimc and dynamic control through innovative nanostructural design and modification in a core-shell structure. First, nano-aluminum with different sizes are prepared to reveal the size effect of nanoscale aluminum on the hydrogen absorption performance; Second, the nano-aluminum and the transition metal are used to form the core-shell structure. The transition metal is crucial for nano-confinement. Additionally, it promotes the decomposition of hydrogen molecules into hydrogen atoms, further regulating thermodynamics and kinetics. Next, the nano-aluminum-based material is coated with gas-selective material to isolate oxygen and water and ensure the passage of hydrogen, thereby solving the problem that the nano-aluminum surface is easily oxidized; Lastly, Design and build a “variable hydrogen pressure research platform” to accurately quantify the aluminum hydrogen absorption reaction conditions; This project will provide theoretical support and feasible solutions to solve the bottlenecks and problems of the reversible hydrogen absorption and desorption performance of AlH3. It has important theoretical and practical significance for hydrogen storage and transportation and fuel cell development.
发展性能优异的储氢材料是解决氢能安全高效储运的关键。AlH3储氢密度高,放氢性能优异,但其制备困难,可逆性差。解决铝吸氢生成AlH3反应条件苛刻问题,改善AlH3可逆吸放氢性能,对于储氢材料发展具有重要科学意义。本项目拟通过创新设计纳米核壳结构与纳米修饰,实现热力学与动力学调控,提升AlH3的可逆吸放氢性能。首先拟制备不同尺寸的纳米铝,揭示纳米化对铝吸氢性能的影响;其次利用纳米铝与过渡金属构成核壳结构,在纳米限域的同时通过过渡金属促进氢分子分解为氢原子,进一步调控热力学与动力学性能;同时利用气体选择性材料对纳米铝基材料进行原位包覆,隔绝氧和水并保证氢气的通过,解决纳米铝表面极易氧化的难题;设计搭建可变氢压研究平台,解决铝吸氢反应条件苛刻难以测试表征的难题;本项目将为解决AlH3可逆吸放氢反应条件苛刻的瓶颈与难题提供理论支持和可行的解决方案,对氢能储运与燃料电池发展具有重要的理论与实际意义。
发展性能优异的储氢材料是解决氢能安全高效储运的关键。AlH3储氢密度高,放氢性能优异,但其制备困难,可逆性差。解决铝吸氢生成AlH3反应条件苛刻问题,改善AlH3可逆吸放氢性能,对于储氢材料发展具有重要科学意义。本项目通过创新设计纳米核壳结构与纳米修饰,实现热力学与动力学调控,提升AlH3的可逆吸放氢性能。分别从纳米化,添加催化剂,隔绝水氧三个方面进行材料设计。首先制备不同尺寸的纳米铝,揭示纳米化对铝吸氢性能的影响;其次利用纳米铝与过渡金属构成核壳结构,在纳米限域的同时通过过渡金属促进氢分子分解为氢原子,进一步调控热力学与动力学性能;同时利用气体选择性材料对纳米铝基材料进行原位包覆,隔绝氧和水并保证氢气的通过,解决纳米铝表面极易氧化的难题;研究证明纳米化可以有效降低材料与氢气的反应条件;二氧化钛可以促进氢分子分解为氢原子,进一步调控热力学与动力学性能;二氧化钛与石墨烯两种气体选择性材料可以隔绝氧和水并保证氢气的通过,解决纳米铝表面极易氧化的难题;最终测试结果证明设计的材料成功降低了铝与氢气的反应条件。本项目将为解决AlH3可逆吸放氢反应条件苛刻的瓶颈与难题提供理论支持和可行的解决方案,对氢能储运与燃料电池发展具有重要的理论与实际意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
Mg-Al 合金可逆吸放氢性能机理研究
金属硼氢化物基储氢材料原位纳米约束设计及其吸放氢反应机理
吸放氢循环法制备钯纳米线研究
微波辐射对金属-氮-氢储氢体系的吸放氢性能影响研究