In traction and energy-storage systems, the cost fraction of battery is generally much larger than that in electronic products. Therefore, these systems have raised higher demand on battery lifetime. Meanwhile, to ensure coordinated control of battery and other components, it is also required to make accurate estimations of the aging state of the battery. This project intends to examine the aging mechanism and establish the aging state model for batteries of traction and energy-storage systems. The mechanism analysis will provide guidance for developing long-life batteries, and is also the intermediate step for establishing the aging state model. The main contents of the project include three parts: the experimental design of accelerated aging tests, aging mechanism analysis, and the aging state modeling. In the aging tests, it intends to establish efficient test procedures and data analysis methods, and to discuss new issues such as multi-stress coupling. In the mechanism analysis section, both the non-disassembly and the postmortem methods are adopted to improve the completeness of the obtained mechanism. Issues like the non-uniform aging inside large-format batteries are also addressed. In the aging modeling part, it will avoid repeating the common modeling process existing in the literature which is based on empirical structure and sets the parameter identification as its main goal. Instead, it aims to establish a new mechanism model with characteristics as follows: the model inputs include stress coupling terms, the model outputs consider the intrinsic representativeness, and the mathematical structure of the model is based on the law of aging mechanism.
在驱动与储能系统中,电池的成本占比往往远高于其在电子产品中的成本占比,因此,此类系统对电池的使用寿命提出了更高的需求,同时,为保证部件间的协调控制精度,还要求对电池的老化状态进行准确估计。本项目研究驱动与储能用电池的老化机理与老化状态模型,其中,老化机理研究将为开发电池长寿命设计方法提供依据,也是建立老化状态模型的中间步骤。项目的主要内容包括老化实验设计、老化机理解析、老化状态建模三部分:在老化实验中,建立高效的老化实验规程与数据分析方法,并讨论多应力耦合等新问题;在机理解析部分,将非解体、解体两类解析方法联合使用,提高机理解析的完备性,并讨论大型电池内部老化的不均匀性等问题;在老化模型部分,力求不再重复文献中以经验公式为结构、以参数辨识为要务的建模过程,而建立新型机理模型,其特征为:模型输入量包含应力耦合项、模型输出量考虑其本征性、模型数学结构基于老化机理规律。
在驱动与储能系统中,电池的成本占比往往远高于其在电子产品中的成本占比,因此,此类系统对电池的使用寿命提出了更高的需求,同时,为保证部件间的协调控制精度,还要求对电池的老化状态进行准确估计。本项目研究驱动与储能用电池的老化机理与老化状态模型,其中,老化机理研究将为开发电池长寿命设计方法提供依据,也是建立老化状态模型的中间步骤。项目的主要内容包括老化实验设计、老化机理解析、老化状态建模三部分:在老化实验中,建立了高效的多因素老化加速实验规程与典型的数据分析方法,包括主因分析、应力耦合性分析、路径依赖性分析方法;在机理解析部分,将非解体、解体两类解析方法联合使用,提高机理解析的完备性,重点研究了上述两类方法在析锂机理解析中的应用;在老化模型部分,建立了新型老化预测机理模型,其特征为:模型输入量包含应力耦合项、模型输出量考虑其本征性、模型数学结构基于老化机理规律。截止本报告时间,项目共发表期刊学术论文10篇,其中英文SCI论文8篇、中文期刊论文2篇,1篇论文被评为ESI高被引论文。共申请专利11项,其中已授权3项,实质审查中8项,包含PCT国际专利1项、美国专利1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
中国参与全球价值链的环境效应分析
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
高比能锂离子电池多因素耦合老化机理解析与衰退建模研究
高分子老化与生物老化机理的研究
橡胶密封结构老化状态动态响应机理与检测方法研究
高性能PBO纤维的老化机理与防老化研究