This project proposes to design the event-triggered data-driven predictive control method for the linear systems with unknown model parameters. With the ensured system stability and control performance, the proposed method substitutes the traditional receding horizontal optimization with the event-triggered law, which can reduce the data transmission and computation load significantly and facilitate the industrial application. Most of the current event-triggered laws are designed based on the prerequisite system model, however, how to develop the corresponding event-triggered law only with the system measurable data is a difficult problem and has not been studied effectively. Therefore, this project first develops the event-triggered laws for the systems with measurable and immeasurable system states respectively, based on the input-to-state stability condition. Second, with the study of the event-triggering condition and frequency in relation to the constraint conditions in practical systems, the comprehensive event-triggered data-driven predictive control method is developed under the practical system constraints. Finally, the effects and advantages of the proposed method are verified by applying the designed method to the chemical engineering platform for application and simulation. This project plays an important role for both the theoretical development and industrial application in the data-driven control domain.
本项目针对模型参数未知的线性系统,设计带有事件触发律的数据驱动预测控制方法,在保证系统稳定性及控制效果的基础上,利用事件触发律代替传统的滚动优化过程,显著减少算法的数据传输量与计算量,降低其实现代价。目前的事件触发律大多是基于已知模型进行设计的,而如何仅通过系统可测数据设计相应的事件触发律是一个较难的问题,且尚未开展有效的研究。因此,本项目首先分别在系统状态可测和不可测的情况下,结合输入稳定性条件,仅利用系统可测数据设计数据驱动预测控制的事件触发律;其次,针对实际系统中带有的约束条件,深入研究约束条件对事件触发条件及触发频率的影响,综合设计带有约束的事件触发数据驱动预测控制方法;最后,将设计的方法应用到化工过程实验平台上进行应用及仿真,验证所设计方法的效果和优势。该项目对数据驱动控制的理论发展及工程实现都具有重要的意义。
本项目针对被控对象模型未知的线性系统,利用系统的可测数据,深入研究并设计了带有事件触发律的数据驱动预测控制方法,并在典型的过程控制系统中进行了仿真应用验证。该项目提出的相关成果创新性地提出了利用数据驱动方法设计事件触发律,并证明了加入事件触发律后的系统稳定性和控制性能,同时显著减少了传统数据驱动算法的数据传输量和计算量;同时,考虑带有实际约束的实际工业系统的优化控制问题,研究约束条件对于事件触发律和控制性能的影响,并求解带有约束的数据驱动预测控制算法,为数据驱动控制方法在实际工业系统中的应用提供参考依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于LASSO-SVMR模型城市生活需水量的预测
基于多模态信息特征融合的犯罪预测算法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
性能驱动下的切换系统事件触发控制及其应用
事件触发分布式模型预测控制方法研究
多智能体系统分布式事件触发预测控制方法研究
基于网络的切换系统采样数据控制与事件触发控制